Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
3 results
Search Results
Item Acoustic non-destructive testing for wood : a thesis by publications presented in fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Albany, New Zealand(Massey University, 2023) Abu Bakar, Adli Hasan BinThe ability to measure the stiffness of wood is important as it can be used to determine the optimal usage of the timber sample to maximise profitability and increase sustainability. The stiffness of trees and logs is measured in order to segregate them into different grades. Stiffness measurements are also made on juvenile trees and seedlings for breeding trials to improve the stiffness quality of future plantations. The traditional static bending test is considered the gold standard for measuring the stiffness of wood. However, this method is destructive, costly and difficult to use. Non-destructive testing (NDT) techniques have therefore been developed to mitigate these issues. Acoustics is the most common NDT technique used to measure wood stiffness. The time-of-flight method is the only acoustic method which can be used on standing trees. However, literature has shown that stiffness measurements obtained using the time-of-flight method can have a significant overestimation. Studies have reported the potential causes of this overestimation but the exact cause is still not known. In recent years, NDT techniques such as guided wave techniques have been developed for other industries. Guided wave testing is extensively used on metallic structures such as pipes and bars. However, there have been very few studies that utilize guided waves for wood. This thesis investigates the use of guided wave knowledge to identify the cause of the overestimation and to obtain improved NDT measurements. This thesis contains some of the first reported works to perform guided wave measurements on cylindrical wood samples. The results from guided wave experiments show that enhancement and suppression of desired wave modes can be achieved using a ring array of shear transducers. The effects of dispersion on ToF measurements are investigated and it was found that dispersion can be a potential cause of overestimation. Guided wave techniques were developed to obtain acoustic velocity and stiffness measurements for wood. The measurements were compared with the traditional resonance, ToF and static bending methods and improved measurements were obtained. More work can be done to further develop guided wave tools and techniques to be used in the wood industry.Item An investigation into non-destructive testing strategies and in-situ surface finish improvement for direct metal printing with SS 17-4 PH : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Albany, New Zealand(Massey University, 2022) Pereira, Tanisha MaryAdditive Manufacturing (AM) technologies have the potential to create complex geometric parts that can be used in high-end product industries, aerospace, automotive, medical etc. However, the surface finish, part-to-part reliability, and machine-to-machine reliability has made it difficult to qualify the process for load dependent structures. The improvement of surface finish on metal printed parts, is a widely sought solution by these high-end industries and non-destructively characterizing the mechanical aptitude of metal printed parts, would pave the way for quality assessment strategies used to certify additively manufactured parts. This thesis examines the capability of laser polishing and non-destructive testing technologies and methods to address these difficulties. This research study presents an investigation into quality management strategies for Direct Metal Printing (DMP) with powdered Stainless Steel 17-4 PH. The research aim is split into two key categories: to improve the surface finish of metal additive manufactured parts and to non-destructively characterize the impact of defects (metallurgical anomalies) on the mechanical properties of the printed part. To improve surface finish of a printed part, a novel methodology was tested to laser polish the Laser-Powder Bed Fusion (L-PBF) parts during print with the built-in laser. Numerous technologies for non-destructive testing techniques already exist, and in the duration of this doctoral study various technologies were explored. However, the final solution focuses on layer-wise capture with a versatile low-cost imaging system, retrofitted within the DMP machine, to capture each layer following the lasering process. In addition, the study also focuses on progressing the characterization of data (images), using a combination of image processing, 3D modelling and Finite-Element-Analysis to create a novel strategy for replicating the as-built specimen as a computer-aided design model and performing simulated fatigue failure analysis on the part. This thesis begins with a broadened justification of the research need for the solutions described, followed by a review of literature defining existing techniques and methods pertaining to the solutions, with validation of the research gap identified to provide novel contribution to the metal additive manufacturing space. This is followed by the methodologies developed, to firstly, control the laser parameters within the DMP and examine the influence of these parameters using surface profilometry, scanning electron microscopy and mechanical hardness testing. The control variables in this methodology combines laser parameters (laser power, scan speed and polishing iterations) and print orientation (polished surface angled at 0º, 20º, 40º, 60º, 80º and 90º degree increments from the laser), using several Taguchi designs of experiments and statistical analysis to characterize the experimental results. The second methodology describes the retrofitted imaging system, image processing techniques and analysis methods used to reconstruct the 3D model of a standard square shaped part and one with synthesized defects. The method explores various 2D to 3D extrusion-based techniques using a combination of code-based image processing (Python 3, OpenCV and MATLAB image processing toolbox) and ready-made software tools (Solidworks, InkTrace, ImageJ and more). Finally, the new research findings are presented, including the results of the laser polishing study demonstrating the successful improvement of surface finish. The discussion surrounding these results, highlights the most effective part orientation for laser polishing the outline of an AM part and the most effective laser parameter combination resulting in the most significant improvement to surface finish (roughness and profile height variation). Summarily, the best improvement in surface roughness was achieved with the <80 angled surface with the laser speed, laser power and polishing iterations set to 500mm/s, 30W, 3 respectively. The sample set total average measured a 16.7% decrease in Ra. NDT digital imaging, thermal imaging and acoustic technologies were considered for defect capture in metal AM parts. The solution presented is primarily focused on the expansion of research to process digital images of each part layer and examine strategies to move the research from a data capture stage to a data processing strategy with quantitative measurement (FEA analysis) of the printed part’s mechanical properties. In addition, the results discuss a method to create feedback to the DMP to selectively melt problematic areas, by re-creating the sliced part layers but removing the well-melted areas from the laser scanning pattern. The methods and technological solutions developed in this research study, have presented novel data to further research these methods in the pursuit of quality assurance for AM parts. The work done has paved the way for more the research opportunities and alternative methods to be explored that complement the methods detailed here. For example, using a combination of in-situ laser polishing, followed by post-processing the AM specimens in an acid-based chemical bath. Alternatively, further exploring acoustic NDT techniques to create an in-built acoustic-based imaging device within the AM machine. Finally, this thesis cross-examines the work done to answer the research questions established at the start of the thesis and verify the hypotheses stated in the methods chapter.Item Catalytic steam reformer tubes non-destructive inspection technology investigation and advancement : a dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatu Campus, New Zealand(Massey University, 2018) Fukuoka, MorioCatalytic Steam reforming is a chemical synthesis process used in the production of hydrogen by mixing hydrocarbon with steam in the presence of a metal-based catalyst. This is achieved in a steam reformer plant where the mixture of gases is elevated to high pressure and temperature through a continuous process for efficient mass production of syngas to meet the global hydrogen demand. One of the challenges in operating a steam reformer plant is monitoring and maintaining the tubular reactors (Reformer tube). Under the severe service conditions the tubes a subjected to various degradation mechanism which ultimately determine the service life. With the tubes accounting to over 20% of the capital cost of a reformer plant, it is of great significance to maximise the service life of each tubes, which has been the motivation to the advancement in metallurgy and NDT technology around reformer tubes from the introduction of Catalytic Steam reforming in the early 20th century. Under the influence of long-term exposure of mechanical stressing and elevated temperature, reformer tube is subjected to a material degrading phenomenon call creep deformation. In 1952, F.R. Larson and J. Miller devised the Larson-Miller Parameter which predicts the lifetime of a material based on service temperature and stress-rupture time and for decades this method was used design and managed reformer tubes on a time-based strategy of 10,000 service hour. However, case studies have time and time shown premature rupture of reformer tube causing unexpected downtime resulting in significant loss in production and asset. Hence engineers and researchers have worked on a more direct method of assessing the remaining service life of reformer tubes. Inline pipe inspection is a hot area of research in robotics and automation. Eddy current, laser profilometry, ultrasonic and infrared thermography is the four technology that is currently dominating the Reformer industry, of which laser profilometry assessment being the only method capable of early stage creep detection. While other fields of pipe inspection have advanced and industrially applied over past decades, it is the author's opinion that NDT technology for reformer tube is outdated with areas of innovation. The aim of this research is to investigate an alternative solution to overcome the challenges and limited faced in modern systems and contribute to the advancement of NDT of Catalytic Steam reformer tubes. Presented in this dissertation is a new framework for an autonomous Reformer Tube inspection system, which incorporates a number of innovative elements for improved creep damage assessment. The program for this work is comprised of three studies. In the first study, the challenges around process profilometry dataset is demonstrated, the limitation in the available methods is discussed, and the impacts in regards to detection creep deformation is identified. Based on the finding, a three-stage creep detection algorithm (CDA) is derived, offering a dynamic solution to distinguish two modes of isotropic and anisotropic creep deformation. The system is experimentally assessed using a set of profilometry measurements collected from retire reformer tube. In the second study, a novel method for tracking a motion of an object moving inside a reformer tube is devised. Literature study showed that conventional profilometry system suffers from measurement uncertainty cause from an uncontrolled rotation of measurement instruction during an inspection. Because location information gives valuable insight as to the performance of the plant, the long-range optic solution is conceptualised, based on polarising filters and Malus Law, to overcome these limitations. In this research, a proof of concept experiment is conducted to evaluate and justify the conceptual method through the development of a working prototype. This novel technique is named Optical Position Tracking (OPT) system. Presented in the final study is an autonomous reformer tube inspection system developed on the basis of the results and finding in the first portion of the research. The contribution of this research is demonstrated with a working prototype justifying the practicality of CDA and the OPT system. The design incorporates wireless communication, modular design, and modern semiconductor sensing technology. In conclusion, this research met the first milestone for an ongoing research to progress the NTD industry.
