Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Assessment of biogeochemical transformation of nitrate in shallow groundwater in the agricultural landscape : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Soil Science at Massey University, Manawatu, New Zealand
    (Massey University, 2019) Gonzalez Moreno, Marcela Angelica
    In groundwaters, denitrification or subsurface denitrification (SD) has been identified as a key attenuation process. Where leached nitrate (NO₃⁻) can be reduced to dinitrogen (N₂ — a harmless gas), offering an ecosystem service in terms of reducing water pollution. However, partial denitrification (PD) can release nitrous oxide (N₂ — a greenhouse gas), resulting in a pollution swap from liquid to gaseous pollution and adding to greenhouse gas emission. There is very limited information available about occurrence, characteristics and dynamics of subsurface denitrification in shallow groundwaters across New Zealand agricultural catchments. We studied 6 pastoral farms (DF 1, 2, 3; SC 1, 2, 3; ARM 1, 2, 3; CAM 1, 3; SR 1, 2, 3; BUR 1, 2 and 3) located in various hydrogeological settings in the Manawatu and Rangitikei Rivers catchments, in the lower North Island of New Zealand. We collected 7 sets of monthly groundwater observations at 17 piezometers from March to September 2018 to characterize the groundwater monthly chemical variations. The collected groundwater samples were analyzed for groundwater redox status, including dissolved oxygen (DO), oxidation-reduction potential, pH, NO₃⁻-N, iron (Fe²⁺), manganese (Mn²⁺) and sulphate (SO₄²⁻). We also conducted a set of push-and-pull tests to gain insights into dynamics of subsurface denitrification occurring in the groundwater samples at the study sites. We quantified changes in concentration of NO₃⁻-N, Br⁻ (tracer), dissolved N₂O-N and excess N₂ during the push-and-pull tests. Our results suggested a spatially variable groundwater redox conditions and SD occurring across the study sites. The piezometers DF 2, 3; SC 1, 2; CAM 3; ARM 1, 2 and 3 showed anoxic redox status. Only the piezometers SC 3 and CAM 1 presented mixed redox condition. While the piezometers DF 1; SR 1, 2, 3; BUR 1, 2 and 3 indicated oxic conditions with some variability over the study. Nitrate is being reduced in the anoxic piezometers DF 2, 3; SC 1, 3; ARM 1, 2, 3 and CAM 3, showing no NO₃⁻-N accumulation (< 0.5 mg L⁻¹). One of the piezometers with mixed redox condition (CAM 1) showed NO₃⁻-N accumulation (> 6 mg L⁻¹) while the piezometer SC 3 showed variability in NO₃⁻-N accumulation ranging from 0.02 mg L⁻¹ to 22.56 mg L⁻¹. The oxic piezometers SR 1, 2, 3; BUR 1, 2 and 3 showed NO₃⁻-N accumulation (> 3 mg L⁻¹) except for piezometer DF 1 that showed variability in NO₃⁻-N concentrations ranging from 0.01 mg L⁻¹ to 3.75 mg L⁻¹ over the study. The concentrations of the electron donors Fe²⁺ and Mn²⁺ were found to be suitable for SD on anoxic piezometers DF 2, 3; SC 1, 2; CAM 3 and ARM 1, 2, 3 (> 1 mg L⁻¹ and > 0.05 mg L⁻¹ respectively). The piezometers with mixed redox status SC 3 and CAM 1 ranged just over the redox threshold for identifying redox processes (0.1 – 1.0 mg L⁻¹ and > 0.05 mg L⁻¹ respectively). In general, the piezometer with oxic redox status (DF 1, SR 1, 2, 3 and BUR 1, 2, 3) showed [Fe²⁺] and [Mn²⁺] below the threshold for identifying redox processes (< 0.1 mg L⁻¹ and < 0.05 mg L⁻¹ respectively) and not suitable to support SD. The dominant terminal product of SD, whether was complete denitrification (N₂ — as end product) or partial SD (N₂O — as end product) spatially varied according to the redox status of the groundwater. Push-pull test results showed an increase in excess N₂ and N₂O-N concentrations at DF 3, ARM 3, CAM 3, BUR 3. The push-pull test conducted at SR 3 and SC 3 showed inconclusive results. Piezometers CAM 3 and ARM 3 showed the highest suitable conditions for SD followed by DF 3. Piezometer BUR 3 showed the highest partial SD rate. Therefore BUR 3 is considered in general, the less suitable piezometer for SD. Our observations highlight the influence of different hydrogeological settings on spatial variability of partial (pollution swamp) or complete (ecosystem service) SD in shallow groundwaters. A better understanding and quantification of spatial and temporal variability of SD process will support information, design and formulation of targeted and effective management measures for sustainable agricultural production while protecting soil, water and air quality.
  • Item
    Investigating the transport and fate of nitrogen from farms to river in the Lower Rangitikei catchment : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Earth Science at Massey University, Manawatu, New Zealand
    (Massey University, 2015) Collins, Stephen Brian
    A sound understanding of the transport and fate of leached nitrate-nitrogen (NO3--N) in shallow groundwater is key to understanding the impacts of land use intensification on the quality of groundwater and surface water bodies. However, these are not well understood in the Lower Rangitikei catchment. This study was undertaken to assess the groundwater flow pattern and its interactions with the Rangitikei River; the redox conditions of the groundwater; and the extent of NO3--N attenuation in shallow groundwater in the Lower Rangitikei catchment. Groundwater depths were collected from more than 100 wells to map the piezometric surface to inform the groundwater flow pattern within the study area. Groundwater interactions with the Rangitikei River were estimated qualitatively from two longitudinal river flow and water quality surveys (on 6th and 20th January 2015) under low-flow conditions. Fifteen wells were sampled and analysed in the study area during December 2014 to characterise the groundwater redox condition. A total of nine piezometers were installed at a range of depths (3 m and 6 m) on two dairy farms (sand country and river terrace) and one cropping farm (sand country). In these piezometers, NO3--N, dissolved oxygen (DO) and other parameters were monitored over March, April and May 2015. Single-well push-pull tests were used to measure NO3--N attenuation in shallow groundwater during May 2015. Groundwater flow was largely influenced by the regional topography, particularly shallow groundwater (<30 m), where it flows from elevated areas such as Marton in a southerly direction towards the Rangitikei River. The longitudinal river flow and water quality surveys revealed a dynamic relationship between the river and the underlying aquifer. The surveys suggested groundwater discharges into the river both upstream and downstream of Bulls. The groundwater redox characterisation showed generally anoxic/reduced groundwater across the lower Rangitikei catchment area. Groundwater typically has a low DO concentration (<1 mg/L) with elevated levels of available electron donors, particularly dissolved organic carbon and Fe2+. These groundwater characteristics provide for generally favourable conditions for NO3--N reduction. Monitoring at the installed piezometers showed a generally low NO3--N concentration at these sites. The push-pull tests revealed NO3--N reduction occurring at all three sites, with the rate of reduction varying between 0.04 mg N L-1 hr-1 to 1.57 mg N L-1 hr-1. These results suggest that groundwater is likely to be connected with the Lower Rangitikei River. However, NO3--N concentrations in the river and groundwater were generally low, especially for the river at low flows. This suggests NO3--N may be undergoing reduction within shallow groundwater before it has a chance to seep into the river. Further evidence for appreciable levels of NO3--N reduction in the shallow groundwater is provided by the redox characterisation of reduced groundwater and the push-pull tests. However, more spatial and temporal surveys and in-situ measurements of denitrification occurrence in the shallow groundwater of the study area are required.