Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Disentangling the effects of temperature and reactive minerals on soil carbon stocks across a thermal gradient in a temperate native forest ecosystem(Springer Nature, 2024-03) Siregar IH; Camps-Arbestain M; Kereszturi G; Palmer A; Kirschbaum MUF; Wang T; Weintraub-Lef SREffects of global warming on soil organic carbon (C) can be investigated by comparing sites experiencing different temperatures. However, observations can be affected by covariance of temperature with other environmental properties. Here, we studied a thermal gradient in forest soils derived from volcanic materials on Mount Taranaki (New Zealand) to disentangle the effects of temperature and reactive minerals on soil organic C quantity and composition. We collected soils at four depths and four elevations with mean annual temperatures ranging from 7.3 to 10.5 °C. Soil C stocks were not significantly different across sites (average 162 MgC ha−1 to 85 cm depth, P >.05). Neither aluminium (Al)-complexed C, nor mineral-associated C changed significantly (P >.05) with temperature. The molecular characterisation of soil organic matter showed that plant-derived C declined with increasing temperature, while microbial-processed C increased. Accompanying these changes, soil short-range order (SRO) constituents (including allophane) generally increased with temperature. Results from structural equation modelling revealed that, although a warmer temperature tended to accelerate soil organic C decomposition as inferred from molecular fingerprints, it also exerted a positive effect on soil total C presumably by enhancing plant C input. Despite a close linkage between mineral-associated C and soil organic C, the increased abundance of reactive minerals at 30–85 cm depth with temperature did not increase soil organic C concentration at that depth. We therefore propose that fresh C inputs, rather than reactive minerals, mediate soil C responses to temperature across the thermal gradient of volcanic soils under humid-temperate climatic conditionsItem Adsorption-desorption characteristics of phenoxyacetic acids and chlorophenols in a volcanic soil : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Process and Environmental Technology Department at Massey University, Palmerston North, New Zealand(Massey University, 1994) Susarla, SridharA study on the adsorption and desorption behaviour of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP) and para-chloro-ortho-cresol (PGOC), found in high concentrations in a New Zealand landfill. Volcanic soil with an organic matter content of 8.7% was used as adsorbent. Results of studies to determine the equilibrium sorption behaviour for each chemical showed the adsorption data for both phenoxyacetic acids and chlorophenols could be described by a Freundlich-type isotherm equation, the adsorption capacity followed the order: 2,4,5-T > MCPA > 2,4-D > 2,4,5-TCP > PCOC > 2,4-DCP at all pH and temperature values. Sorption capacity decreased with increasing pH and temperature; the heat of adsorption values indicating chemicals were adsorbed either by physical or hydrogen bonding to the soil surface. Results show only 2-4% of the total surface was occupied indicating chemical adsorption to specific sites present in the soil organic matter. The desorption results indicate isotherm parameters were dependent on the amount of each chemical adsorbed onto the soil. A linear relationship was developed to obtain the desorption parameters from the adsorption isotherm parameters. Desorption experimental results reveal that all the solutes adsorbed could not be desorbed, indicating a fraction of the chemical was resistant to desorption. A modified Freundlich-type equation described the competitive equilibrium adsorption and desorption of 2,4-D-MCPA, 2,4-D-PCOC and MCPA-PCOC mixtures. The model incorporated competition coefficients and was found to fit measured data, satisfactorily. The competition coefficients were linearly related to the initial concentration of the solutes in case of adsorption, and on the amount of chemical adsorbed for desorption. The results showed that the adsorption capacity of each solute decreased by about 8-12% in presence of the other competing solutes. However, in case of MCPA, the capacity decreased by 31% in the presence of 2,4-D. The desorption results reveal that 2,4-D and MCPA desorbed to a lesser extent in the bicomponent system compared to the corresponding single solute system. Similarly, the desorption of PCOC was less in the presence of 2,4-D than of MCPA compared to single solute system. A spinning basket reactor determined the kinetics of sorption for phenoxyacetic acids and chlorophenols. The film-mass transfer coefficients determined from the initial uptake rate data for the first 45 seconds, while the surface diffusion coefficients were obtained by fitting the experimental results with a homogeneous surface diffusion model solution. The desorption diffusion coefficients were found to be of the same order of magnitude as those of adsorption diffusion coefficients. The bicomponent surface diffusion coefficients were found to be slightly smaller (less than 10%) than single solute surface diffusion coefficients and this was due to competition between the solutes. A surface diffusion model based on equilibrium sorption, film-mass transfer and surface diffusion coefficient along with dispersion was used to predict the soil column data. All the parameters in the model were determined from independent experiments or calculated from literature correlations. The results from the column studies indicate that an increase in the concentration and flow rate resulted in the solutes moving faster in the column. A significant tailing of the chemical was observed at low concentrations for all the solutes. The results indicate that sorption played a dominant role in the transport of chemicals in columns. The breakthrough and elution for phenoxyacetic acids was in the order 2,4-D > MCPA > 2,4,5-T. For chlorophenols the order was: 2,4-DCP > PCOC > 2,4,5-TCP. The HSDM also used to predict the adsorption and desorption of bicomponent mixtures and the results indicated that the breakthrough and elution occurred earlier than in single solute systems. The order of breakthrough and elution was PCOC > 2,4-D > MCPA. To conclude, this thesis presents a detailed investigation of the adsorption and desorption characteristics of phenoxyacetic acids and chlorophenols for single and dual component systems in a volcanic soil. This study has identified the mechanisms and processes responsible for the leaching of the chemicals and can be used in remediation of a contaminated soil.
