Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    A Systematic Review of Computational Fluid Dynamics Models in the Stomach and Small Intestine
    (MDPI (Basel, Switzerland), 2023-05-16) Palmada N; Hosseini S; Avci R; Cater JE; Suresh V; Cheng LK; Cappello F; Burgio S
    The use of in silico models to improve our understanding of the fluid dynamics within the gastrointestinal tract has increased over the last few decades. Computational fluid dynamics (CFD) is an in silico technique that can be used to characterize and model the fluid mechanics driving the digestion of food and absorption of nutrients. This systematic review outlines the current methodologies used to develop CFD models of the stomach and small intestine, and summarizes the flow and mixing patterns predicted from these models. A literature search was conducted on Scopus, and 15 stomach CFD studies and 15 small intestine CFD studies were included in this review after the literature selection and exclusion process. Two primary flow patterns; retropulsive flow and recirculation regions, were identified within the stomach CFD models. The flow patterns within the small intestine were depended on the type of motility pattern present. The shortcomings of the current models are discussed, and considerations for future gastric and intestinal flow modeling are provided.
  • Item
    Smart capsules for sensing and sampling the gut: status, challenges and prospects
    (BMJ Publishing Group Ltd on behalf of the British Society of Gastroenterology, 2024-01) Rehan M; Al-Bahadly I; Thomas DG; Young W; Cheng LK; Avci E
    Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
  • Item
    Differences in small intestinal apparent amino acid digestibility of raw bovine, caprine, and ovine milk are explained by gastric amino acid retention in piglets as an infant model
    (Frontiers Media S.A., 2023-09-04) Ahlborn NG; Montoya CA; Roy D; Roy NC; Stroebinger N; Ye A; Samuelsson LM; Moughan PJ; McNabb WC; Gallier S
    BACKGROUND: The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. OBJECTIVE: To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. METHODS: Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. RESULTS: On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. CONCLUSION: Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.