Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Autonomous control of a humanoid soccer robot : development of tools and strategies using colour vision : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University
    (Massey University, 2007) Rielly, Baden
    Humanoid robots research has been an ongoing area of development for researchers due to the benefits that humanoid robots present, whether for entertainment or industrial purposes because of their ability to move around in a human environment, mimic human movement and being aesthetically pleasing. The RoboCup is a competition designed to further the development of robotics, with the humanoid league being the forefront of the competition. A design for the robot platform to compete at an international level in the RoboCup competition will be developed. Along with the platform, tools are created to allow the robot to function autonomously, effectively and efficiently in this environment, primarily using colour vision as its main sensory input. By using a 'point and follow' approach to the robot control a simplistic A.I. was formed which enables the robot to complete the basic functionality of a striker of the ball. Mathematical models are then presented for the comparison of stereoscopic versus monoscopic vision, with the expansion on why monoscopic vision was chosen, due to the environment of the competition being known. A monoscopic depth perception mathematical model and algorithm is then developed, along with a ball trajectory algorithm to allow the robot to calculate a moving balls trajectory and react according to its motion path. Finally through analysis of the implementation of the constructed tools for the chosen platform, details on their effectiveness and their drawbacks are discussed.
  • Item
    The design and construction of an anthropomorphic humanoid service robot : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University, Palmerston North, New Zealand
    (Massey University, 2011) Barlow, Peter William Edward
    This thesis presents the research, mechanical design and construction of the lower half of a biped robot. In the long run this work will be developed further to build a service robot to perform repetitive (and often dangerous) tasks and to help disabled people to carry out everyday tasks. The aim of this research project is to develop a humanoid with the agility of a ‘high end’ robot but on a very low budget in comparison. In order to achieve this, several unique mechanical attributes have been proposed and implemented such as dual push rod actuated joint articulation. This technique produces a larger joint torque and reduces leg inertia allowing for the implementation of WCK serial controlled servo modules for actuation. To further increase human-like similarities a toe joint is implemented. This gives the humanoid the ability to stride more elegantly, increase speed control, and reduce energy used for each step. All the parts of this robot have been manufactured from scratch and most have been CNC machined. Solidworks is used as a 3D modelling package to produce a simulated version of the humanoid to determine dimensions and dynamics before construction takes place. SolidCAM is a computer aided machining package which was used to specify machining paths to produce G-Code. An additional 4th axis was added to the CNC machine solely for the purpose of this project as many parts were too intricate and complex for the standard 3 axis machine. A biped humanoid requires several types of sensors for balancing. High accuracy and resolution is of paramount importance for the successful control of the humanoid. Various force sensors are reviewed and their advantages and disadvantages are discussed. Gyroscopes and attitude heading reference systems (AHRS) are investigated and tests are performed on all units to obtain operational characteristics and accuracy. Visual Basic.net has been used for developing software for controlling and monitoring all sensors and actuator modules. Essentially a humanoid platform has been developed with appropriate software allowing for the next stage of development, the development of the gait control algorithms.