Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Diet plasticity and links to changing foraging behaviour in the conservation of subantarctic yellow-eyed penguins (Megadyptes antipodes)
    (John Wiley and Sons, Ltd, 2022-05-17) Muller CG; Chilvers BL; French RK; Battley PF
    1. Diet is a key factor affecting seabird foraging behaviour, ultimately influencing survival, breeding success and long-term population viability. The density and distribution of prey species in the marine environment are influenced by many factors including climate effects such as El Niño southern oscillation and climate change that alter water temperature. 2. While poor quality diet has been implicated as a contributing factor in the decline of some mainland New Zealand yellow-eyed penguin (Megadyptes antipodes) populations, little is known about their diet in the subantarctic where the majority of the species breeds. 3. Blood and feather samples (n = 63) were collected for stable isotope analysis of diet from 25 individual birds breeding on subantarctic Enderby Island, Auckland Islands, New Zealand, from 2015 to 2018. 4. Diet data were analysed by factors such as breeding year, sex and foraging behaviour. Stable isotope analysis demonstrated significant changes in diet during each year of the study, which included both El Niño and La Niña conditions. 5. Diet during El Niño conditions comprised lower trophic level prey, which were more benthic, and found closer to shore than diet during La Niña. 6. Coupled with the reported variable breeding success of yellow-eyed penguins in the subantarctic, variable diet suggests prey availability is likely to be a limiting factor in some years. Prey availability is therefore expected to be a major influence on survival and breeding success of this endangered species in the future, particularly if the effects of climate change become more pronounced. 7. This research highlights an urgent conservation need to identify prey species utilized by the southern population, along with their distribution in time and space, and therefore also the effect of diet on long-term population stability.
  • Item
    Population ecology and foraging behaviour of yellow-eyed penguins in New Zealand’s subantarctic Auckland Islands : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Science and Ecology, Massey University, Manawatū, New Zealand
    (Massey University, 2022) Muller, Christopher
    Penguins and other seabirds rely on healthy, functioning marine systems, and are vulnerable to human-induced changes. Accurate long-term monitoring of a threatened species’ population size and trend is therefore important for conservation management. The endangered yellow-eyed penguin (Megadyptes antipodes) is found only in New Zealand waters, with separate northern (mainland New Zealand and offshore islands) and southern (subantarctic) breeding populations. The northern population is declining, believed to be due to threats at sea including direct mortality, as well as changes to food supply, and the effects of climate change. The southern population was previously estimated to comprise at least 60% of the species. Despite this, the subantarctic has been little studied, with one previous population estimate at the Auckland Islands in 1989, two at Campbell Island, and no recent data or measurement of population trends. To address this data gap, this research studied the population and foraging behaviour (diving, foraging location, and diet) of breeding yellow-eyed penguins on Enderby Island, Auckland Islands, from 2015–2017. The first step for this research was locating cryptic yellow-eyed penguin nests hidden in thick vegetation, as ground searches are inefficient, time-consuming, and potentially hazardous for researchers in subantarctic terrain. I utilised a drone fitted with a novel multi-frequency VHF receiver which located nests in only 3% of the time for traditional search methods, facilitating my other research. Next, I defined methods for surveying populations in the subantarctic, and estimated a mean of 577 breeding pairs at the Auckland Islands, although the population and number of breeders fluctuated annually, and may have declined since 1989. My foraging research showed that 62% of foraging trips, and over 86% of all southern yellow-eyed penguin dives were pelagic (mid-water), unlike the predominantly benthic (seabed) dives of the northern population. Maximum dive depth was 134 m for benthic dives, and 115 m for pelagic dives, which is deeper than many northern penguins dive. The proportion of pelagic dives increased during La Niña years, likely influenced by climate conditions and prey availability. Foraging distance also varied, with a maximum distance of 47 km from shore, further than many northern birds travel. Foraging area size was greater for females and for pelagic foragers, although benthic foragers travelled further from shore on average. Diet also varied, and during El Niño conditions comprised lower trophic level prey, which were more benthic, and found closer to shore than during La Niña years. Diet results showed some individuals maintained consistent foraging behaviour, although foraging plasticity was also evident. Some individuals changed their foraging behaviour between years, and even within a breeding season. Variable breeding success in the subantarctic, along with variable foraging behaviour and diet suggests that prey availability is likely limiting the southern population in some years. Prey availability is therefore expected to be a major influence on survival and breeding success in the future, particularly if the effects of climate change become more pronounced.
  • Item
    A study of brain injury in New Zealand sea lion pups : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Palmerston North, New Zealand
    (Massey University, 2011) Roe, Wendi Dianne
    The New Zealand sea lion (Phocarctos hookeri) is a threatened species endemic to New Zealand. The majority of breeding in this species occurs on the Auckland Islands in the sub-Antarctic, and recent population estimates indicate that pup production is declining. Trauma is a significant cause of mortality in New Zealand sea lion pups, and much of this is believed to be caused by adult and subadult males, that bite, crush, shake and throw young pups. In this thesis, a number of techniques are used to determine the role played by traumatic brain injury in the mortality of NZ sea lion pups. The findings of gross necropsy examinations show that pups have numerous lesions indicative of traumatic brain injury, including skull fractures and subdural haemorrhages, and that pups die due to crushing and impact injuries. Although some pups have gross lesions considered in human paediatric medicine to be indicative of shaking injury, detailed histological and microbiological studies of sea lion pups show that most of these are associated with meningitis due to Klebsiella pneumoniae. This bacterium is a common cause of pup mortality. Immunohistochemical techniques are used to demonstrate that axonal injury is common in sea lion pups, but show that shaking is not a common mechanism of this pathological process. Instead, most axonal injury is found to be due to hypoxia-ischaemia, and evidence that raised intracranial pressure has occurred is comparatively common in dead pups. The combined findings of histological and immunohistochemical studies suggest that lesions such as optic sheath haemorrhage, intracranial subdural haemorrhage, spinal sub-meningeal haemorrhage, and optic nerve axonal injury could be caused by pertubations to vascular, intra-ocular, intracranial and subarachnoid pressure rather than being a direct result of trauma as is proposed in shaken baby syndrome.
  • Item
    Feeding ecology of the New Zealand sea lion (Phocarctos hookeri) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor Philosophy in Zoology at Massey University, Palmerston North, New Zealand
    (Massey University, 2009) Meynier, Laureline
    The New Zealand (NZ) sea lion Phocarctos hookeri is the only pinniped endemic to NZ with a population of approximately 12,000 individuals. Its breeding range is currently restricted to NZ sub-Antarctic islands, and it has failed to recolonise its pristine distribution around the NZ main islands despite its protection since 1881. The current hypothesis is that the population growth of this pinniped is limited by the distribution of suitable prey on the Auckland Islands (50°30'S, 166°E) shelf, and by the direct and indirect pressure exerted by the arrow squid Nototodarus sloani fishery. However, this hypothesis has not been fully tested to date as there has been limited information on the diet of the NZ sea lion and their potential prey. The objective of this thesis is to analyse the diet of NZ sea lions over several years with particular emphasis on the most reproductively important segment of the population: lactating females. This thesis provides the first quantification by percentage mass of the diet of NZ sea lion using a combination of stomach content analysis, qualitative fatty acid (FA) analysis, and quantitative FA signature analysis (QFASA). Stomach contents and blubber FAs were analysed from 121 individuals incidentally caught (by-caught) in the southern arrow squid fishery from the years 1997 to 2006. The blubber FAs of 78 freeranging lactating females captured at Enderby Island, Auckland Islands, were also examined during January and February of 2000 to 2005. Data obtained from both stomach analysis and QFASA indicate that arrow squid, rattails Macrouridae, hoki Macruronus novaezelandiae and red cod Pseudophycis bachus are key prey species for NZ sea lions in the Auckland Islands region. Because these prey species live mostly at depths greater than 200 m, lactating females must undertake long foraging trips and dive regularly to greater depths than other sea lion species. Data from QFASA indicates that this foraging pattern is conducted over an extended period through the summer and autumn. The daily food requirement of a lactating female was estimated by a simple energetic model to be greater than 20% of its body mass. During years of low arrow squid recruitment such as 1999 and 2001, the amounts of squid required by the NZ sea lion population may have been similar to the amount harvested by the fishery, suggesting that resource competition is likely to occur between the arrow squid fishery and NZ sea lions in years of low squid abundance. Half of the fishing activity of the southern squid fishery occurs in the north of the Auckland Islands shelf where NZ sea lions forage, leading to incidental captures every year. This research emphasises that management of the NZ sea lion must not only consider the direct interactions with the arrow squid fishery, but also the likelihood of food resource competition between the fishery and NZ sea lions.