Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
3 results
Search Results
Item Critical power is a key threshold determining the magnitude of post-exercise hypotension in non-hypertensive young males.(Wiley & Sons Ltd on behalf of The Physiological Society, 2023-09-15) Lei T-H; Wang I-L; Chen Y-M; Liu X-H; Fujii N; Koga S; Perry B; Mundel T; Wang F; Cao Y; Dobashi K; Kondo N; Li H-Y; Goulding RP; Poole DThe effect of different exercise intensities on the magnitude of post-exercise hypotension has not been rigorously clarified with respect to the metabolic thresholds that partition discrete exercise intensity domains (i.e., critical power and the gas exchange threshold (GET)). We hypothesized that the magnitude of post-exercise hypotension would be greater following isocaloric exercise performed above versus below critical power. Twelve non-hypertensive men completed a ramp incremental exercise test to determine maximal oxygen uptake and the GET, followed by five exhaustive constant load trials to determine critical power and W' (work available above critical power). Subsequently, criterion trials were performed at four discrete intensities matched for total work performed (i.e., isocaloric) to determine the impact of exercise intensity on post-exercise hypotension: 10% above critical power (10% > CP), 10% below critical power (10% < CP), 10% above GET (10% > GET) and 10% below GET (10% < GET). The post-exercise decrease (i.e., the minimum post-exercise values) in mean arterial (10% > CP: -12.7 ± 8.3 vs. 10% < CP: v3.5 ± 2.9 mmHg), diastolic (10% > CP: -9.6 ± 9.8 vs. 10% < CP: -1.4 ± 5.0 mmHg) and systolic (10% > CP: -23.8 ± 7.0 vs. 10% < CP: -9.9 ± 4.3 mmHg) blood pressures were greater following exercise performed 10% > CP compared to all other trials (all P < 0.01). No effects of exercise intensity on the magnitude of post-exercise hypotension were observed during exercise performed below critical power (all P > 0.05). Critical power represents a threshold above which the magnitude of post-exercise hypotension is greatly augmented. NEW FINDINGS: What is the central questions of this study? What is the influence of exercise intensity on the magnitude of post-exercise hypotension with respect to metabolic thresholds? What is the main finding and its importance? The magnitude of post-exercise hypotension is greatly increased following exercise performed above critical power. However, below critical power, there was no clear effect of exercise intensity on the magnitude of post-exercise hypotension.Item Short-term effects of lumbopelvic complex stability training in elite female road cyclists(Hylonome Publications on behalf of the International Society of Musculoskeletal and Neuronal Interactions and the Hellenic Osteoporosis Foundation, 2022-03-01) San Emeterio C; Cochrane D; Guillén-Rogel P; Marín PJ; Lyritis GOBJECTIVES: The purpose of this study was to determine the effects of short-term lumbopelvic stability training on muscular endurance and stability in elite female cyclists. METHODS: Twenty-four female road cyclists were randomly allocated to a core training group (CTG, n=12) or control group (CG, n=12). In addition to their scheduled training the CTG performed a core training program, that consisted of 6 core exercises performed in a session every other day until a total of 8 training sessions were completed. The CG did not receive the core training program and completed their scheduled training. The lumbopelvic-hip complex was assessed pre- and post-core program included the following exercises: single leg deadlift (SLD), bird-dog (BD), plank test (PT), and side-bridge plank test (SPT). RESULTS: In comparison to CG, CTG significantly improved the time to failure in PT, SPT-Left, and SPT-Right (p<0.05). Further, CTG resulted in a significant decrease in SLD (p<0.05) compared to CG for the three accelerometry measures. CONCLUSION: The present results indicate that following 8 sessions of lumbopelvic stability training muscular endurance and core stability were enhanced.Item Effects of Post-Exertional Malaise on Markers of Arterial Stiffness in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome(MDPI (Basel, Switzerland), 2021-03) Bond J; Nielsen T; Hodges LBackground: Evidence is emerging that individuals with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may suffer from chronic vascular dysfunction as a result of illness-related oxidative stress and vascular inflammation. The study aimed to examine the impact of maximal-intensity aerobic exercise on vascular function 48 and 72 h into recovery. Methods: ME/CFS (n = 11) with gender and age-matched controls (n = 11) were randomly assigned to either a 48 h or 72 h protocol. Each participant had measures of brachial blood pressure, augmentation index (AIx75, standardized to 75 bpm) and carotid-radial pulse wave velocity (crPWV) taken. This was followed by a maximal incremental cycle exercise test. Resting measures were repeated 48 or 72 h later (depending on group allocation). Results: No significant differences were found when ME/CFS were directly compared to controls at baseline. During recovery, the 48 h control group experienced a significant 7.2% reduction in AIx75 from baseline measures (p < 0.05), while the matched ME/CFS experienced no change in AIx75. The 72 h ME/CFS group experienced a non-significant increase of 1.4% from baseline measures. The 48 h and 72 h ME/CFS groups both experienced non-significant improvements in crPWV (0.56 ms−1 and 1.55 ms−1, respectively). Conclusions: The findings suggest that those with ME/CFS may not experience exercise-induced vasodilation due to chronic vascular damage, which may be a contributor to the onset of post-exertional malaise (PEM).
