Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    The effect of an integrated catchment management plan on the greenhouse gas balance of the Mangaotama catchment of the Whatawhata Hill Country Research Station : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Ecology at Massey University, Manawatu, New Zealand
    (Massey University, 2012) Smiley, Daniel
    An integrated catchment management plan implemented in the Mangaotama catchment of the Whatawhata Research Station in 2001 demonstrated that Pinus radiata forestry on marginal land, along with conservation measures and intensification could produce a win-win outcome for economic output and the environment. However, greenhouse gas mitigation was never fully considered. This research investigated the effect of the plan on the land’s greenhouse gas balance and carbon stocks between 2000 and 2011. Historical records, modelling with OVERSEER and CenW, literature values and field measurements were used to account for CO2, CH4, and N2O from the four main land-use types: pasture, native forest, pine, and native plantings. The original land-use would have emitted a net 10.99 Gg CO2e over 10yrs, whereas the new land-use sequestered a net 47.26 Gg CO2e in its first 10yrs. The total carbon stocks rose by 15.9 Gg C. Forestry conversion of almost half the area explained most of this effect. Agricultural intensification increased per hectare emissions from pasture, but overall pasture emissions were lowered by over half due to the reduction in livestock numbers. The native plantings had a small impact due to the small area planted and their slower growth compared with pines. Soil carbon was lost under all land-uses, except possibly in grazed native forests, but these conclusions were hampered by a scarcity of samples. Uncertainty also surrounded the modelling of the pine forest in complex terrain, which is not yet adequately captured in CenW. A preliminary look at carbon trading suggested that it could strongly undermine the viability of the original farm system, but it could also help to fund the expensive transition to the new land-use. Overall, it was found that in addition to the benefits already shown by the integrated catchment management plan, it was also an effective way of mitigating climate change.
  • Item
    An investigation of the spatial distribution of N2O emissions from sheep grazed hill country pastures in New Zealand :|ba thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Environmental Science at Massey University, Palmerston North, New Zealand
    (Massey University, 2012) Letica, Selai Ahovelo
    New Zealand’s (NZ) greenhouse gas (GHG) profile is unique amongst developed countries as almost 50% of GHG emissions are derived from agriculture. In contrast, agricultural sectors of other developed countries typically contribute <10% to the national total GHG profile. In NZ, agricultural GHG emissions are dominated by methane (CH4) from enteric fermentation and nitrous oxide (N2O) from excreta deposition and nitrogen (N) fertiliser application. Nitrous oxide emissions from agricultural soils are largely affected by N inputs and soil moisture conditions, and contribute 33% of agricultural GHG emissions. In pastoral hill country these factors are inherently more variable than in flat land pastures due to topographydriven differences in excretal N returns and in soil moisture. This limits the application of N2O emission data collected from trials conducted on flat land to hill country situations. The objective of this thesis was to determine the influence of topography and fertiliser N inputs to soil on N2O emissions in hill country. Small scale trials were conducted to measure these aspects of N cycling. Three trials were conducted to measure the effect of slope and fertiliser N input on nitrification potential (NP) and N2O emissions. The results of these short term trials suggested that slope class and fertiliser N rates significantly affected nitrification rates and N2O emissions in hill country due to differences in N inputs and moisture status, as affected by slope. Both NP and N2O emissions were highly spatially variable during the measurement periods and the results presented in this thesis suggest that the majority of N2O emissions in sheep grazed hill country are produced from low slope/stock camping areas. Based on our findings it is recommended that mitigation options to reduce the risk of N loss from sheep grazed hill country should be targeted at low slope/stock campsite areas. Due to the significant relationship between slope class and N2O emissions, slope class may be a suitable parameter for up-scaling estimates of N2O emissions from sheep grazed hill country.
  • Item
    Nitrous oxide emission from soil under pasture as affected by grazing and effluent irrigation : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Soil Science at the Massey University, Palmerston North, New Zealand
    (Massey University, 2005) Bhandral, Rita
    New Zealand's greenhouse gas inventory is dominated by the agricultural trace gases, CH4 and N2O instead of CO2, which is dominant on a global scale. While the majority of the anthropogenic CH4 is emitted by ruminant animals as a by-product of enteric fermentation, N2O is mainly produced by microbial processes occurring in the soil. In grazed pastoral soils, N2O is generated from N originating from dung, urine, effluent applied to land, biologically fixed N2 and fertiliser. The amount of emission depends on complex interactions between soil properties, climatic factors and management practices. Increased intensification of pastoral agriculture in New Zealand, particularly in dairying has led to an increased production of farm dairy effluent. Traditionally, direct disposal of nutrient rich farm dairy effluents (FDE) into water bodies was an acceptable practice in New Zealand, but with the introduction of the Resource Management Act (1991), discharge of effluents into surface waters is now a controlled activity and many Regional Councils encourage the land irrigation of effluents to protect surface water quality. While the impact of grazing and FDE irrigation on groundwater contamination through leaching and runoff of nutrients has been studied extensively, there has been only limited work done on the effect of these practices on air quality as affected by N2O emission. This thesis examines the effects of various factors, such as compaction due to cattle treading, and the nature, application rate and time of effluent application on N2O emission in relation to the changes in the soil physical properties and C and N transformation from a number of small plot and field experiments. The results were then used, together with data from the literature, to predict the emissions from effluent irrigated pastures using a process-based model. In grazed pastures, animal treading causes soil compaction, which results in decreased soil porosity and increased water filled pore space that stimulate the denitrification rate as well as influence the relative output of N2O and dinitrogen (N2) gases. A field plot study was conducted to determine N2O emission from different N sources as affected by soil compaction. The experiment comprised two main treatments (uncompacted and compacted) to which four N sources (natural cattle urine, potassium nitrate, ammonium sulphate and urea at the rate of 600kg N ha-1) and a control (water only) were applied. Compaction was obtained through driving close parallel tracks by the wheels of the vehicle. The changes in the soils physical properties (bulk density, penetration resistance (PR), soil matric potential and oxygen diffusion rate (ODR) due to the compaction created by the wheel traction of the vehicle were compared with the changes in these properties due to the treading effect of grazing cattle, which was monitored in another field experiment. The N2O fluxes were measured using a closed chamber technique. The compaction at the grazing trial and at the wheel traction experimental plot caused significant changes in soil bulk density, PR, soil matric potential and ODR values. Overall, the bulk density of the compacted soil was higher than the uncompacted soil by 6.7% (end of 3 weeks) and 4.9% (end of 1 week) for the field experiment and the grazing trial, respectively. Results suggest that maximum compaction occurred in the top 0-2 cm layer. Compaction caused an increase in N2O emission, which was more pronounced in the nitrate treatment than in the other N sources. In the case of the compacted soil, 10% of the total N applied in the form of nitrate was emitted, whereas from uncompacted soil this loss was only 0.7%. N2O loss was found to decrease progressively from the time of application of N treatments. Total N2O emission for the three month experimental period ranged from 2.6 to 61.7 kg N2O-N ha-1 for compacted soil and 1.1 to 4.4 kg N2O-N ha-1 for uncompacted soil. In the second field plot experiment, the results of N2O fluxes from treated farm dairy effluent (TFDE), untreated farm dairy effluent (UFDE), treated piggery farm effluent (TPFE) and treated meat effluent (TME) applied to 2m x 1m plots for 'autumn' (February-April) and 'winter' (July-September) are described. Effluent irrigation resulted in higher emissions during both the seasons indicating that the supply of C and N through effluent irrigation contributed to increased N2O emission. The highest emissions were observed from TPFE (2.2% of the applied N) and TME (0.6% of the applied N) during the autumn and winter seasons, respectively. Emissions generated by the TFDE application were the lowest of the four effluent sources but higher than the water and control treatments. The effect of effluent irrigation on N2O emission was higher during the autumn season than the winter season. The effect of key soil and effluent factors such as water filled pore space (WFPS), nitrate, ammonium and available C in soil and effluents on N2O emission was examined using regression equations. The third field plot experiment examined the effect of four TFDE application rates (25mm, 50mm, 75mm and 100mm) on N2O emission. Treatments were added to 2m x 1m plots lined with plastic sheet to restrict the flow of effluent. The N2O emission increased with the increasing effluent loading rate, with the emission ranging from 0.8 to 1.2% of the added N. This can be attributed to the increasing addition of N and C in the soil with the increasing application rate of the effluent. Besides, providing C and N substrates, the effluent application increased the WFPS of the soil, thereby creating conditions conducive for dentrification and N2O emission. A field experiment was conducted at the Massey University No 4 Dairy farm in which N2O emission and related soil and environmental parameters were monitored for two weeks following the TFDE applications over an area of 0.16 ha in September 2003 (21mm), January 2004 (23mm) and February 2004 (16mm). Emissions were measured by a closed chamber technique with 20 chambers for each treatment, in order to cover the variability present in the field. N2O emissions increased immediately after the application of the effluent, and subsequently dropped after about two weeks. The total N2O emitted from the effluent application after the first, second and third irrigation was 2%, 4.9% and 2.5%, respectively of the total N added through the effluent. The higher emission observed during the second effluent irrigation event was due to high soil moisture content during the measurement period. Moreover effluent was applied immediately after a grazing event leading to more N and C input into the soil through excretal deposition. In this experiment the residual effect of effluent application on N2O emission was also examined by monitoring emissions 12 weeks after the effluent application. The emissions from the control and effluent irrigated plots were similar, indicating that there was no residual effect of the effluent irrigation on N2O emissions. In a separate field study, N2O emission was monitored at the Massey University No 4 Dairy farm to examine the effect of a grazing event of moderate intensity on N2O emission. The treatments consisted of a grazed and an ungrazed control. The fluxes from the grazed site were much higher than for the ungrazed site with the total emissions from the former site being 8 times higher than the latter site for the entire experimental period. A modified New Zealand version of denitrification decomposition model (DNDC), a process based model, namely "NZ-DNDC", was used to simulate N2O emission from the TFDE application in the field experiment. The model was able to simulate the emission as well as the WFPS within the range measured in the field. But simulated emissions from the TFDE were slightly lower than measured values. Improvements in the parameterisation for effluent irrigation are likely to further improve the N2O simulations.
  • Item
    Quantifying variation in estimated methane emission from ruminants using the SF6 tracer technique : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Animal Science at Massey University, Palmerston North, New Zealand
    (Massey University, 2008) Vlaming, Johannes Bernardus
    With the signing of the Kyoto Protocol, New Zealand must reduce its national greenhouse gas emissions. As New Zealand has a large proportion of its national emissions as methane (~31%), and methane (CH4) has a short atmospheric lifetime, it provides a good target for mitigation strategies. The initial aim of this research was to identify high and low CH4-emitting cattle to assess factors that contribute to low CH4 production. Initial studies using the SF6 tracer technique to estimate CH4 production could not identify consistently high and low CH4 emitters. Research was therefore undertaken to confirm whether this was due to high variation in estimated CH4 yields, and to quantify the within- and between-animal variation in CH4 production when using the SF6 technique. This research showed considerable within- (coefficient of variation, CV = 7-10%) and between-animal (CV = 7-18%) variation in CH4 yield (g CH4/kg DMI) over time when using the SF6 technique. This is larger than the within- (CV = 3%) and between-animal (CV = 10%) variation reported for calorimetry. This led to the recommendation that the SF6 technique not be used in identifying animals for high or low CH4 yield. A power analysis was developed based on the measured variances for the SF6 technique. Results from this analysis provide researchers with important information on the number of animals and measurements per animal required when undertaking CH4 experiments. One of the sources of variation with the SF6 technique is the SF6 release from permeation tubes. Estimated CH4 yield increases by approximately 8.5% when going from a release rate of 3 mg SF6/day to a rate of 5 mg SF6/day. Further, an in vitro study indicated that SF6 release from permeation tubes is approximately 8% lower in rumen fluid than in air. While further research is required to confirm these results, they emphasise the need to allow time for the release rate to stabilise in the rumen for 4-5 days prior to undertaking measurements. It also led to the recommendation that release rates used in experiments should be within a narrow range, and balanced across experimental treatments.