Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    The ecology of feral cats (Felis catus) on a New Zealand offshore island : considerations for management : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Pholosophy in Zoology at Massey University, Manawatu, New Zealand
    (Massey University, 2018) Strang, Kathryn Emily
    Invasive species have contributed to the global biodiversity crisis, with the majority of recent day terrestrial vertebrate extinctions implicating invasive predators. Domestic cats (Felis catus), particularly feral cats, are among the main culprits. In New Zealand, the continued decline of native species is largely due to invasive predators, which has led conservation efforts to focus on pest management. Feral cats are often a secondary focus for pest control, and their impacts within an ecosystem are not well understood. The main objective of this study was to produce a comprehensive study of feral cat ecology using a population of feral cats on Ponui Island, New Zealand, and highlight factors that should be considered for efficient control operations. Predators distribute themselves and move within their environment in relation to prey availability and habitat type. These factors vary between locations, leading to differences in home range sizes that are difficult to predict. A relationship between home range size and population density was identified in the literature, which I used to predict changes in home range size with changing population density. I mapped the home ranges of eight cats for one year using location points from Very High Frequency (VHF) radio-telemetry and camera traps, then two males were removed from the population, seven months apart. The first removal resulted in an increase in the home range sizes of the remaining cats, whereas the second removal saw an invasion of four unmarked male cats. These results show that feral cats change their home ranges accordingly with changes in density, and removals (such as control operations) result in a change in feral cat ranging behaviour. Feral cats are often live-trapped during control programmes to reduce capturing non-target animals. This technique is labour intensive because traps need to be checked frequently for welfare purposes. Describing feral cat activity patterns can dictate when live-traps should be set and checked. Camera traps have recently been used to estimate activity patterns, but have yet to be validated against accelerometry devices. Therefore, I compared the activity patterns obtained through camera trap data to that from collar-mounted accelerometry devices, and found a high correlation (R2 >0.9) between the two methods. The highest correlation was when activity from 600 or more videos was used. Feral cats were most active between sunset and sunrise, and live-traps should be set during these times to increase trapping efficiency and reduce bycatch. The reproductive biology of invasive predators can be used to predict the recovery of populations following control operations, however there is very little information available for feral cats. Therefore, I investigated the reproduction of feral cats in a stable, insular population. Using camera trap data, I found that females had high reproductive output, averaging three kittens per litter and two litters per year. However, the recruitment rate was low in this population; only 3-4% of kittens survived to one-year-old. There were two infanticide events observed; the first reported for solitary-living feral cats. Females moved shorter distances when they had young kittens (less than seven-weeks-old). These results show that feral cats can rapidly recover from control operations. Females are less likely to encounter traps when they have young kittens, suggesting there are optimal seasons to capture cats. Population genetics is used in invasive biology to identify populations that are isolated and have limited immigration. Eradication of isolated populations will be easier and more cost-efficient, with low chances of reinvasion. Although offshore islands are geographically isolated, there is the chance of reinvasion that is assisted by humans. I investigated the population genetics of the feral cats on Ponui Island using genetic samples collected from adults and kittens, and also opportunistically studied parentage. Most of the fathers of the litters were the heaviest males, and the males that had the most home range overlap with queens. Population genetics showed that the cats have most likely been isolated with no recent introductions, suggesting the removal of cats from this island would be successful with low chances of reinvasion. Feral cats can have large impacts on native species, but prey on rats that also have detrimental effects on wildlife. This led me to investigate the diet of feral cats using scat analysis on an island with native birdlife, and rodents at high densities. I examined season and sex differences on diet and the impacts of cats on native species. Feral cats consumed prey based on seasonal availability, with cats eating rats when rats were at their highest density. Females ate smaller prey more frequently than males, such as passerines. The cats on this island are not reliant on the rat population, and were found to eat many native species such as brown kiwi, morepork, and fantails. The findings from this thesis can be applied to feral cat management to develop efficient control operations. The decision to control a population should be based on both dietary and genetic data to reduce possible cascading ecological effects from the predator removal and identify genetically isolated populations. Home range, activity, and diet data can be used to determine the control protocol, such as; trap spacing, the time traps should be set and checked, and if secondary or primary poisoning should be used and the seasons that cats would uptake the baits. Finally, knowledge of feral cat reproduction can be used to predict the recovery of the population.
  • Item
    The red vented-bulbul (Pycnonotus cafer) : invasion dynamics and ecological impacts of an introduced pest bird in New Caledonia and implications for management : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology at Massey University, Manawatu, New Zealand
    (Massey University, 2018) Thibault, Martin
    Invasive alien species are a major cause of biodiversity loss globally, especially on islands where high species richness and levels of endemism accentuate their impacts. Various international institutions have constructed lists of the most harmful invasive species to help environment managers at both global and local scales to prioritize their efforts. The red-vented bulbul (Pycnonotus cafer) is a passerine bird species considered among the three worst invasive birds on the planet. This species is currently spreading over the tropical archipelago of New Caledonia, one of the 36 world biodiversity hotspots. This dissertation presents the findings of a PhD study conducted in New Caledonia with two objectives: 1) to describe this introduced population, and 2) to evaluate the threats from its dispersal using both existing knowledge and new in-situ and ex-situ data and a variety of analysis techniques. From the literature, I identified three key impacts explaining the species’ status: i) damage to agricultural crops, ii) noxious seed dispersal, and iii) competition with other avifauna. I estimated the local population size (approx. 140,000 individuals), its habitat use (inhabited areas), its density along an urbanization gradient (30-120 ind/km2), and I produced lists of consumed plant and animal species and identified a color preference in the foraging strategy of the red-vented bulbul. Exploration of each impact category revealed i) substantial losses on fruit production (18% of tomato production), ii) impact on the abundance of nine native bird species that may be driving a spatial reassembly of the community, and iii) a short distance dispersal (77-92 m) that could promote the dispersal of introduced plant species at the expense of endemic species. Finally, through modelling, I estimated the climatic niche of the species at a global scale and identified that most island territories as suitable for the establishment of this invasive bird species. Regardless of whether the red-vented bulbul deserves its status as “world worst” species, quantitative impact assessments in its alien range such as the studies presented here are needed to prevent the dispersal and harmful impacts of this species on human activities and sensitive ecosystems. Implications for management are discussed.