Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Deodorisation of protein hydrolysate and extraction of proteins from Hoki (Macruronus novaezelandiae) skin : a thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology at Massey University, Albany, New Zealand(Massey University, 2018) Sharim, Nur SyazwanaThe present study had two main objectives. The first objective was to identify a suitable deodorisation treatment for pre-prepared Hoki skin protein hydrolysate (HSPH) and the second objective was to investigated suitable pre-treatment and extraction processes for collagen and gelatine from Hoki (Macruronus novaezelandiae) skin which resulted in low odour extracts. The off-odour in HSPH post-deodorisation treatments and in the Hoki collagen and gelatine post-extraction processes were assessed by determining the total volatile base nitrogen (TVB-N) and trimethylamine (TMA) concentrations. The sensory technique of flash profiling was employed to determine the odour attributes in all HSPH, gelatine and collagen samples after treatment and extraction processes. In addition to the respective off-odour assessments, the extracted collagen and gelatine were evaluated in terms of total protein content (g protein/100g dry sample), moisture content (w/w%), and yield (w/w% of dry sample). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was conducted to determine the molecular weight (kDa) of extracted collagen and gelatine. Amino acid profile analysis was performed to identify the extracted samples. In the first part of this study, dried green tea leaves (GT), powdered tea polyphenol (TP) and dried olive leaves (OL) investigated for deodorisation of HSPH. Using an orthogonal design, three factors (concentration, temperature and time) and three corresponding levels were used in the design. The two most suitable deodorisation treatments for pre-prepared HSPH were 1) deodorant: powdered tea polyphenol; concentration: 0.04 g/ml hydrolysate; temperature: 50˚C; time: 20 min, and 2) deodorant: powdered tea polyphenol; concentration: 0.04 g/ml hydrolysate; temperature: 80˚C; time: 60 min. For a more economical solution, GT was determined to be a possible alternative deodorant to TP by manipulating the total phenolic content prior to deodorisation. For a secondary deodorisation treatment, preliminary results on strong acid hydrogen form ion exchange resin (Dowex G-26) reduced the TMA concentration in partially deodorised HSPH sample significantly (p-value<0.05) from 3.4±0.1 deodorisation to 0.8±0.1 mg of nitrogen/100g wet sample. In the second part of this study, Hoki skins were pre-treated using 0.2 M NaOH solution (1:6 w/v) for 60 min at 18±2oC and then extraction with distilled water (1:10 w/v) for 60 minutes at 50±2˚C. This treatment produced gelatine product with the highest protein content (41.3±0.9 g of protein/100g dry sample) and reduced off-odour based on TMA content (0.9±0.1 mg of nitrogen/ 100 g wet sample). However, a lower gelatine yield recovery of 61.0±1.7 % was determined in this gelatine sample. SDS-PAGE and amino acid profile tests concluded that all pre-treatment and extraction processes successfully extracted gelatine samples as the final product. In contrast, collagen samples were not confirmed as pure collagen in this study. The current findings for both objectives of this study has shown that pre-treating the raw material using acid or alkali prior to subsequent processes is more efficient in reducing the off-odour in the final products rather than employing deodorisation processes as a subsequent countermeasure after hydrolysis and extraction.Item Measurement and control of odorous and polluting gases from wastes : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Soil Science at Massey University, Palmerston North, New Zealand(Massey University, 2004) Kulasegarampillai, ManoharanManagement of odorous and polluting gases from wastes is a world-wide challenge. Gaseous losses of nitrogen and sulphur from stored manure and sewage biosolids can be considerable, and these gaseous are offensive and undesirable. Hence, it is necessary to quantify these gas emissions from waste to determine the impact on air quality as well as to find out the efficient and effective control measures. A field observation indicated that amendment of dairy manure with natural materials, such as soil and wood shavings can reduce gaseous emission. To understand the mechanism for reduction of gaseous emissions and to select an optimum natural medium, laboratory incubation studies were conducted to measure the gaseous loss of ammonia (NH3 ) and hydrogen sulfide (H2 S) from stored manure and biosolids under aerobic and anaerobic conditions for a period of about 7 weeks. Natural materials such as soil, untreated pine bark, sawdust and wood savings, were evaluated for their potential to reduce these gaseous emissions. Ammonia emission rate was typically peak within two days of the experiment and declined rapidly under aerobic and anaerobic condition from stored manure and sewage biosolids. NH3 emission was higher during aerobic than anaerobic incubation but in the case of biosolids the difference was very small. The total nitrogen loss due to NH3 emission was very low. It was around 1.23% from manure and 1.87% from biosolids under aerobic incubation. Around 49 mg NH3 was emitted from a kg of cattle manure during aerobic incubation and it was 1155 mg from biosolids. H2 S emissions were higher during anaerobic than aerobic incubation from manure and biosolids. Around 9.2 mg H2 S was emitted from a kg of manure and it was around 150.7 mg from biosolids under anaerobic incubation. All materials tested were found to have an effect on the NH3 and H2 S emission. However, pine bark and top soil amendment reduced the emission efficiently. NH3 emission was reduced by 78% under anaerobic condition when 20g bark was amended with lOOg manure and it was around 56% in biosolids. Soil amendment reduced the NH3 emission by 50% in manure and 46% in biosolids. Pine bark reduced the H2 S emission by 80% from manure and by 83.5% from biosolids. Top soil amendment reduced the H2 S emission by 50% from manure and 79% from biosolids. Therefore, the addition of natural materials, such as pine bark and soil, as amendments to manure and biosolids during storage Offers potential for reducing emissions of NH3 and H2 S.
