Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
Search Results
Item Mutagenesis treatment of Mortierella alpina for PUFA production enhancement for future food development(Elsevier B.V., 2025-06) Alhattab M; Lebeau J; Singh S; Puri MRandom mutagenesis has been identified as a key tool for improving microbial and fungal strains enabling the development of isolates with improved traits suited for industrial scale metabolite production to enhance the nutritional value of future foods. Presented here, is a random mutagenesis strategy employed to assess the effect of 5-fluorouracil (20-200 µg/ml), alone and in combination with the secondary agents octyl gallate and nocodazole, and diethyl sulfate (0.1 to 1 %) chemical mutagenic agents, on the biomass and lipid production as well as the FAME profile. Interestingly, a correlation was demonstrated between 5-fluorouracil exposure time and the arachidonic acid content, which was also influenced by the concentration used. 5-fluororuracil of 100 µg/ml treatment for 48 h resulted in the highest arachidonic acid (% TFA) content in isolates. Mutant M5F047 isolated with 5-fluororuracil (100 µg/ml) alone, proved to be most superior in terms of polyunsaturated fatty acid (PUFA) and arachidonic acid production, as compared to the Mortierella alpina wild type strain, with enhancements that doubled that of the parent strain. These improvements are more favorable for industrial scale production of arachidonic acid, a precursor of meaty flavour to improve plant-based meats in future food development.Item Heat-set gelation of milk- and fermentation-derived β-lactoglobulin variants(Elsevier Ltd, 2025-08) Pan Z; Kornet R; Hewitt S; Welman A; Hill JP; Wubbolts M; Mitchell S; McNabb WC; Ye A; Acevedo-Fani A; Anema SGMilk-derived β-lactoglobulin (mβ-LG) and fermentation-derived β-lactoglobulin (fβ-LG) may slightly differ in their amino acid sequences. This study aims to investigate the heat-set gelling behaviour of mβ-LG (variants A, B, and C) and fβ-LG A variants. Differential scanning calorimetry indicated similar denaturation temperatures for mβ-LG A and fβ-LG A (∼75 °C), with mβ-LG C highest (∼81 °C) and mβ-LG B intermediate (∼78 °C). All fβ-LG A formed translucent gels with a fine-stranded structure, whereas mβ-LG A, B, and C formed opaque gels with a coarse particulate structure. fβ-LG A exhibited delayed gelation onset and lower gel stiffness compared to mβ-LG A. Among mβ-LG's, mβ-LG A showed the highest gel stiffness, followed by mβ-LG B and then mβ-LG C. Rheological analysis showed that fβ-LG A gels were more elastic and ductile compared to mβ-LG A gels, indicated by smaller tan δ values and delayed increases in energy dissipation ratio at higher strain amplitude; mβ-LG B and mβ-LG C gels were less elastic but more ductile compared to mβ-LG A gels. The more elastic and ductile nature of fβ-LG A gels indicates their potential for applications requiring these specific textural properties. By selecting mβ-LG variants from milk and/or utilizing precision fermentation to engineer additional differences, it is possible to tailor the gelation characteristics of β-LG to meet specific functional requirements.
