Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Broiler Age Influences the Apparent Metabolizable Energy of Soybean Meal and Canola Meal
    (MDPI (Basel, Switzerland), 2023-01-02) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    The effects of broiler age on the apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) of soybean meal (SBM) and canola meal (CM) were examined. A corn-SBM basal diet was developed, and two test diets were formulated by substituting (w/w) 300 g/kg of the basal diet with SBM or CM. Six groups of broiler chickens, aged 1–7, 8–14, 15–21, 22–28, 29–35 or 36–42 d post-hatch, were utilized. Each diet, in pellet form, was randomly allocated to six replicate cages in each age group. Except for the 1–7 d age group, the birds were fed a starter (d 1–21) and/or a finisher (d 22–35) diet prior to the introduction of the experimental diets. The number of birds per cage was 10 (d 1–7), 8 (d 8–14) and 6 (d 15–42). The AME and AMEn of SBM and CM were determined by total excreta collection. The data for each protein source were subjected to orthogonal polynomial contrasts using the General Linear Models procedure. Bird age decreased the retention of dry matter quadratically (p < 0.001) for both SBM and CM. The retention of nitrogen decreased linearly (p < 0.001) with the advancing age of broilers for SBM and CM. The AMEn of SBM and CM decreased quadratically (p < 0.001) as the birds grew older. The highest AMEn was observed during week 1 for both SBM and CM, then declined until week 3, followed by increases thereafter. The current results showed that the age of broiler chickens influenced the AMEn of SBM and CM and supported the use of age-dependent AMEn of feed ingredients in diet formulations.
  • Item
    Application of Apparent Metabolizable Energy versus Nitrogen-Corrected Apparent Metabolizable Energy in Poultry Feed Formulations: A Continuing Conundrum
    (MDPI (Basel, Switzerland), 2021-08) Abdollahi MR; Wiltafsky-Martin M; Ravindran V
    In the present investigation, N retention, AME, and AMEn data from six energy evaluation assays, involving four protein sources (soybean meal, full-fat soybean, rapeseed meal and maize distiller’s dried grains with solubles [DDGS]), are reported. The correction for zero N retention, reduced the AME value of soybean meal samples from different origins from 9.9 to 17.8% with increasing N retention. The magnitude of AME penalization in full-fat soybean samples, imposed by zero N correction, increased from 1.90 to 9.64% with increasing N retention. The Δ AME (AME minus AMEn) in rapeseed meal samples increased from 0.70 to 1.09 MJ/kg as N-retention increased. In maize DDGS samples, the correction for zero N retention increased the magnitude of AME penalization from 5.44 to 8.21% with increasing N retention. For all protein sources, positive correlations (p < 0.001; r = 0.831 to 0.991) were observed between the N retention and Δ AME. The present data confirms that correcting AME values to zero N retention for modern broilers penalizes the energy value of protein sources and is of higher magnitude for ingredients with higher protein quality. Feed formulation based on uncorrected AME values could benefit least cost broiler feed formulations and merits further investigation.
  • Item
    Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method
    (MDPI (Basel, Switzerland), 2022-01-13) Khalil MM; Abdollahi MR; Zaefarian F; Chrystal PV; Ravindran V
    The present study investigated the influence of broiler age on the AMEn of wheat, sorghum, barley, and corn using the substitution method at six different ages (days 7, 14, 21, 28, 35, and 42). A corn-soybean meal basal diet was formulated and, the test diets were developed by replacing (w/w) 300 g/kg of the basal diet with wheat, sorghum, barley, or corn. Bird age influenced (p < 0.001) the AMEn of wheat and sorghum but had no effect (p > 0.05) on those of barley and corn. The AMEn of wheat increased with age (p < 0.001) from 12.53 MJ/kg DM in week 1 to 14.55 MJ/kg DM in week 2, then declined subsequently, but no linear or quadratic responses were observed. The AMEn of sorghum demonstrated a quadratic response (p < 0.05), increasing from 12.84 MJ/kg DM in week 1 to 13.95 MJ/kg DM in week 2, and then plateauing to week 6. Overall, the present results suggest that the effect of broiler age on the AMEn varies depending on the grain type. The current data suggest that the application of age-dependent AME or AMEn of wheat and sorghum will lead to more precise feed formulations.