Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Nitrogen and phosphorus leaching losses under cropping and zone-specific variable-rate irrigation
    (CSIRO Publishing, 2023-12-19) Drewry JJ; Hedley CB; McNeill SJ; El-Naggar AG; Karakkattu KK; Horne DJ; Dickinson N
    Context. Agricultural land use is intensifying globally. Irrigation and other farm practices associated with intensification, such as cultivation, grazing, and fertiliser application, can increase nutrient losses. Variable rate irrigation (VRI) systems manage irrigation to spatially variable soils and different crops (zones). We lack knowledge on nutrient losses under zone-specific irrigation for mixed-cropping systems (combined crop and livestock grazing). Aims. This study evaluated drainage, nitrogen, and phosphorus leaching losses under zone-specific irrigation for a temperate mixed-cropping system. Methods. The study site had sheep grazing and crops including peas, beans, wheat, turnips, plantain, and ryegrass-white clover pasture. It had a variable-rate centre-pivot irrigator for two soil zones (free draining Zone 1; poorly drained Zone 2). Drainage flux meters (DFMs) collected drainage leachate, and samples for measurement of nitrogen (N) and phosphorus (P) concentrations. Soil water balance data and statistical modelling evaluated nutrient leaching losses over 5 years. Key results. The mean leaching load of NOx-N (nitrate + nitrite) across 5 years was 133 (s.d. 77) and 121 (s.d. 97) kg N/ha/year for Zone 1 and Zone 2, respectively. Similarly, the mean leaching load of reactive P across all years was 0.17 (s.d. 0.30) and 0.14 (s.d. 0.14) kg P/ha/year for Zone 1 and Zone 2, respectively. The nitrogen concentrations and loads generally had greater uncertainty in Zone 2. Conclusions. The DFMs worked well for the free draining sandy soil. However, fewer samples were collected in the silt soil, requiring the statistical modelling developed in this study. This study gave a reasonable estimate of annual leaching load means, but the indicators of their within-year variation were not reliable, partly due to differences in sampling frequency. With some exceptions, there was generally more NOx-N leaching from the free draining Zone 1. VRI provided a system to control irrigation-related drainage and leaching in these soil zones. Implications. Drainage flux meters are more reliable in well-drained than in poorly drained soil. Given the lack of published studies, this study has improved knowledge of nutrient losses under zone-specific irrigated mixed-cropping systems in a temperate climate.
  • Item
    The application of nanobubbles in agriculture : this thesis is submitted in accordance with the regulations, governing the award of the degree of Master of Engineering with Honours in Chemical and Bio Process Engineering, Department of Chemical and Bio Process Engineering, Massey University, Manawatu, New Zealand
    (Massey University, 2023-06) Gibbon, Ian Peter
    Nanobubbles have an extensive range of applications across engineering and industry. Our area of interest lies in agriculture and horticulture: Irrigation, using water enriched with oxygen nanobubbles, has been shown to greatly improve crop yields when compared to irrigation with untreated water. Currently, there are no manufacturers in New Zealand producing nanobubble generators to meet the requirements of large-scale irrigation. Field trials were undertaken, to quantify the increase in plant and crop growth through irrigation with oxygen nanobubbles. The results showed a marked increase in root mass and crop growth, supporting the viability and development of a nanobubble generator. The purpose to this thesis is to provide the research, testing and development of nanobubble tubes leading to a commercially viable, scalable nanobubble generator. Research was carried out to provide an understanding of the science behind nanobubbles. Applying this knowledge to the iterative process of design, print, test and evaluate, allowed comparisons to be made for various tube designs and allowed one design to be selected and taken forward for commercial development. Test results show that the optimum tube design, in terms of performance, is a compromise between the dissolved oxygen readings taken from the product water and the head loss across the nanobubble tube. The results also showed that smaller multiple tube arrangements out-performed large-scale single tubes. This led to a patent application for a multi-tube design. This thesis describes the 3-D printing of nanobubble tubes, nanobubble generators and current commercial installations under evaluation. The thesis concludes by discussing future development opportunities for the nanobubble generator.
  • Item
    Comparison of maize silage and traditional forage crops in New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science at Massey University, Manawatū Campus, New Zealand
    (Massey University, 2022) Thant, Aung Myo
    Cattle wintering systems using crops including grazing kale, swede, and fodder beet crops in situ have resulted in soil and water quality deterioration. Nitrate leaching is the most common problem due to the high deposition of urine N driven by excess N intake. Alternative cropping systems offer a potential solution to reduce these environmental problems while maintaining or maximising productivity. We proposed maize silage as an alternative crop because it has high yield potential, flexible feeding requirements, compliments the nutritive value of pasture, and is potentially suitable for more regions in New Zealand in the future due to climate change. However, research needs to determine whether maize silage yield, feed quality and potential nitrate losses during production and utilisation means it is a viable alternative to in situ grazed forage crops in these areas. Field experiments were conducted at Massey University, Tokoroa and Kiwitea to determine forage yield and feed quality, management effects and site differences in 2018/19 and 2019/20. Crop yields and forage N content were utilised to simulate urine N loads from the feeding of these forage crops. The excreted N loads were analysed in APSIM (Agricultural Production Systems sIMulator) to predict nitrate leaching losses. Maize produced significantly higher yields compared with the winter forage crops at all Massey University trials while producing competitive yields at Tokoroa and Kiwitea. Yields ranged from 10,940 to 30,417 kg DM/ha for maize whilst wide and lower yield ranges were observed for the winter forage crops (4,579 to 22,928 kg DM/ha). Irrigation increased yields of forage crops by 29-63%. Similarly, nitrogen fertiliser increased yield by 30%, on average. The faster canopy development of maize has the advantage of intercepting more radiation in summer and suppressing weeds, contributing to greater growth and yield despite a shorter crop season. All forage crops produced forage with good metabolisable energy content (MJ/kg DM); higher values in swede (10.1-14.5) and fodder beet (10.8-14.9) whereas intermediate values in kale (8.9-12.7) and maize (9.9-12.2). However, maize was the highest energy-yielding crop, ranging from about 200-316 GJ/ha while other crops varied from 34 to 217 GJ/ha. Protein content in kale (7.5-16.6% DM) and swede (11.4-18.2% DM) were adequate for non-lactating cows whereas maize (5.4-9.2% DM) and fodder beet (7.6-11.2% DM) were lower than recommended protein levels for dairy cows but offering an opportunity to reduce urinary N excretion. Maize also had recommended fibre content. With higher sugar contents, swede and fodder beet were poor in fibre sources, potentially prone to rumen acidosis unless considered mixed diet with high fibre feed. APSIM modelling indicated that maize would produce the lowest urine N output while swede the highest in simulated feeding. Accordingly, N loads/ha was higher for winter forage crops especially when good yields were produced. When common feeding practices were considered, i.e., off-paddock maize feeding (no urine N deposition) and on-paddock grazing of winter forage crops (high urine N deposition), simulated nitrate losses from maize cropping systems were the lowest. Predicted nitrate losses were 21 and 32 kg N/ha for maize under irrigated and non-irrigated conditions. A ryegrass cover crop further reduced simulated nitrate losses by 20-30%. Predicted nitrate losses for fodder beet, kale, and swede crops were 126, 162, 154 kg N/ha under irrigated conditions and 72, 201, 199 kg N/ha under non-irrigated conditions, respectively in grazing systems.