• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Conference Papers
    • View Item
    •   Home
    • Massey Documents by Type
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integration of precision farming data and spatial statistical modelling to interpret field-scale maize grain yield variability in New Zealand

    Icon
    View/Open Full Text
    6_7_Jiang_G_et_al.pdf (1.317Mb)
    Abstract
    Spatial variability in soil, crop, and topographic features, combined with temporal variability in weather can result in variable annual yield patterns within a paddock. The complexity of interactions between these yield-limiting factors requires specialist statistical processing to be able to quantify spatial and temporal variability, and thus inform crop management practices. This paper evaluates the role of multivariate linear regression and a Cubist regression model to predict spatial variability of maize-grain yield at two sites in the Waikato Region, New Zealand. The variables considered were: crop reflectance data from satellite imagery (Sentinel 2 and Landsat 8), soil electrical conductivity (EC), soil organic matter (OM), elevation, rainfall, temperature, solar radiation, and seeding density. The datasets were split into training and validation sets, proportionally 75% and 25% respectively. Both models learn using 10-fold cross-validation. Statistical performance was evaluated by leaving out one year of yield data as the validation set for each iteration, with all remaining years included in the training set for building the prediction models. In the multiple-year analysis, the Cubist model (RMSE=1.47 and R2=0.82 for site 1; RMSE=2.13 and R2=0.72 for site 2) produced a better statistical prediction than the MLR model (RMSE=2.41 and R2=0.51 for site 1; RMSE=3.37 and R2=0.30 for site 2) for the prediction of the validation set. However, for the leave-one-year-out analyses, the MLR model provided better statistical predictions (RMSE=1.57 to 4.93; R2 = 0.15 to 0.31) than the Cubist model (RMSE = 2.62 to 5.9; R2 = 0.05 to 0.14) for Site 1. For Site 2, both models produced poor results. Yield data for additional years and inclusion of more independent variables (e.g. soil fertility and texture) may improve the models. This analysis demonstrates that there is potential to use statistical modelling of spatial and temporal data to assist farm management decisions (e.g. variable rate application, precision land levelling, irrigation, and drainage). Once the functional relationship between within-paddock yield potential and complementary variables is established, it should be possible to provide an accurate management prescription, enabling variable rates of an input (e.g. plant density, fertiliser) to be applied automatically across the paddock based on the “yield-input” response curve.
    Citation
    https://www.otago.ac.nz/geocomputation/index.html, 2019, pp. ? - ? (7)
    Date
    2019-12-01
    Author
    Jiang, G
    Grafton, MCE
    Pearson, DORCID
    Bretherton, M
    Holmes, A
    Rights
    Creative Commons Attribution 4.0 International (CC BY 4.0)
    Publisher
    http://auckland.figshare.com/geocomputation2019
    Collections
    • Conference Papers
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1