64-bit architechtures and compute clusters for high performance simulations

Loading...
Thumbnail Image
Date
2006
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
Abstract
Simulation of large complex systems remains one of the most demanding of high performance computer systems both in terms of raw compute performance and efficient memory management. Recent availability of 64-bit architectures has opened up the possibilities of commodity computers accessing more than the 4 Gigabyte memory limit previously enforced by 32-bit addressing. We report on some performance measurements we have made on two 64-bit architectures and their consequences for some high performance simulations. We discuss performance of our codes for simulations of artificial life models; computational physics models of point particles on lattices; and with interacting clusters of particles. We have summarised pertinent features of these codes into benchmark kernels which we discuss in the context of wellknown benchmark kernels of the 32-bit era. We report on how these these findings were useful in the context of designing 64-bit compute clusters for high-performance simulations.
Description
Keywords
64-bit architectures, Computer performance
Citation
Hawick, K.A., James, H.A., Scogings, C.J. (2006), 64-bit architechtures and compute clusters for high performance simulations, Research Letters in the Information and Mathematical Sciences, 1 [i.e. 10], 1-16