Acoustics and Biological Structures
dc.contributor.author | Alves-Pereira M | |
dc.contributor.author | Rapley B | |
dc.contributor.author | Bakker H | |
dc.contributor.author | Summers S | |
dc.contributor.editor | Fellah, ZEA | |
dc.contributor.editor | Ogam, E | |
dc.date.accessioned | 2023-08-06T22:37:03Z | |
dc.date.available | 2019-04-25 | |
dc.date.available | 2023-08-06T22:37:03Z | |
dc.date.issued | 2019-04-25 | |
dc.description.abstract | Within the context of noise-induced health effects, the impact of airborne acoustical phenomena on biological tissues, particularly within the lower frequency ranges, is very poorly understood. Although the human body is a viscoelastic-composite material, it is generally modeled as Hooke elastic. This implies that acoustical coupling is considered to be nonexistent at acoustical frequencies outside of the human auditory threshold. Researching the acoustical properties of mammalian tissue raises many problems. When tissue samples are investigated as to their pure mechanical properties, stimuli are not usually in the form of airborne pressure waves. Moreover, since the response of biological tissue is dependent on frequency, amplitude, and time profile, precision laboratory equipment and relevant physiological endpoints are mandatory requirements that are oftentimes difficult to achieve. Drawing upon the viscoelastic nature of biological tissue and the tensegrity model of cellular architecture, this chapter will visit what is known to date on the biological response to a variety of different acoustic stimuli at very low frequencies. | |
dc.description.confidential | false | |
dc.identifier | https://www.intechopen.com/ | |
dc.identifier | 5 | |
dc.identifier.citation | Acoustics of Materials, 2019 | |
dc.identifier.doi | 10.5772/intechopen.82761 | |
dc.identifier.elements-id | 423454 | |
dc.identifier.harvested | Massey_Dark | |
dc.identifier.isbn | 9781838803506 | |
dc.identifier.uri | http://hdl.handle.net/10179/19715 | |
dc.publisher | InTechOpen | |
dc.publisher.uri | https://www.intechopen.com/ | |
dc.relation.isPartOf | Acoustics of Materials | |
dc.relation.uri | https://www.intechopen.com/books/acoustics-of-materials/acoustics-and-biological-structures | |
dc.rights | © 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | |
dc.subject | infrasound | |
dc.subject | low frequency noise | |
dc.subject | health | |
dc.subject | cellular biology | |
dc.subject | tissue morphology | |
dc.title | Acoustics and Biological Structures | |
dc.type | chapter | |
pubs.notes | Not known | |
pubs.organisational-group | /Massey University | |
pubs.organisational-group | /Massey University/College of Humanities and Social Sciences | |
pubs.organisational-group | /Massey University/College of Humanities and Social Sciences/School of People, Enviroment and Planning | |
pubs.organisational-group | /Massey University/College of Sciences | |
pubs.organisational-group | /Massey University/College of Sciences/School of Food & Advanced Technology Manawatu |