Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ahmed, S.E."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Appoximation-assisted [sic] estimation of eigenvectors under quadratic loss
    (Massey University, 2005) Ahmed, S.E.
    Improved estimation of eigen vector of covariance matrix is considered under uncertain prior information (UPI) regarding the parameter vector. Like statistical models underlying the statistical inferences to be made, the prior information will be susceptible to uncertainty and the practitioners may be reluctant to impose the additional information regarding parameters in the estimation process. A very large gain in precision may be achieved by judiciously exploiting the information about the parameters which in practice will be available in any realistic problem. Several estimators based on preliminary test and the Stein-type shrinkage rules are constructed. The expressions for the bias and risk of the proposed estimators are derived and compared with the usual estimators. We demonstrate that how the classical large sample theory of the conventional estimator can be extended to shrinkage and preliminary test estimators for the eigenvector of a covariance matrix. It is established that shrinkage estimators are asymptotically superior to the usual sample estimators. For illustration purposes, the method is applied to three datasets.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings