Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cooke SJ"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Co-production and conservation physiology: outcomes, challenges and opportunities arising from reflections on diverse co-produced projects
    (y Oxford University Press and the Society for Experimental Biology, 2025-07-18) Cooke SJ; Bett NN; Hinch SG; Adolph CB; Hasler CT; Howell BE; Schoen AN; Mullen EJ; Fangue NA; Todgham AE; Cheung MJ; Johnson RC; Olstad RS-T; Sisk M; Sisk CC; Franklin CE; Irwin RC; Irwin TR; Lewandrowski W; Tudor EP; Ajduk H; Tomlinson S; Stevens JC; Wilcox AAE; Giacinti JA; Provencher JF; Dupuis-Smith R; Dwyer-Samuel F; Saunders M; Meyer LCR; Buss P; Rummer JL; Bard B; Fuller A; Helmuth B
    As a relatively nascent discipline, conservation physiology has struggled to deliver science that is relevant to decision-makers or directly useful to practitioners. A growing body of literature has revealed that co-produced research is more likely to generate knowledge that is not only relevant, but that is also embraced and actionable. Co-production broadly involves conducting research collaboratively, inclusively, and in a respectful and engaged manner - spanning all stages from identifying research needs to study design, data collection, interpretation and application. This approach aims to create actionable science and deliver meaningful benefits to all partners involved. Knowledge can be co-produced with practitioners/managers working for regulators or stewardship bodies, Indigenous communities and governments, industry (e.g. fishers, foresters, farmers) and other relevant actors. Using diverse case studies spanning issues, taxa and regions from around the globe, we explore examples of co-produced research related to conservation physiology. In doing so, we highlight benefits and challenges while also identifying lessons for others considering such an approach. Although co-production cannot guarantee the ultimate success of a project, for applied research (such as what conservation physiology purports to deliver), embracing co-production is increasingly regarded as the single-most important approach for generating actionable science to inform conservation. In that sense, the conservation physiology community would be more impactful and relevant if it became commonplace to embrace co-production as demonstrated by the case studies presented here.
  • Loading...
    Thumbnail Image
    Item
    Effects of three immobilizing drug combinations on ventilation, gas exchange and metabolism in free-living African lions (Panthera leo)
    (Oxford University Press and the Society for Experimental Biology, 2023-08-10) Donaldson AC; Buss PE; Fuller A; Meyer LCR; Cooke SJ
    Free-living lions (12 per group) were immobilized with tiletamine-zolazepam-medetomidine (TZM), ketamine-medetomidine (KM), or ketamine-butorphanol-medetomidine (KBM). During immobilization, respiratory, blood gas and acid-base variables were monitored for 30 minutes. Respiratory rates were within expected ranges and remained constant throughout the immobilizations. Ventilation increased in lions over the immobilization period from 27.2 ± 9.5 to 35.1 ± 25.4 L/min (TZM), 26.1 ± 14.3 to 28.4 ± 18.4 L/min (KM) and 23.2 ± 10.8 to 26.7 ± 14.2 L/min (KBM). Tidal volume increased over the immobilization period from 1800 ± 710 to 2380 ± 1930 mL/breath (TZM), 1580 ± 470 to 1640 ± 500 mL/breath (KM) and 1600 ± 730 to 1820 ± 880 mL/breath (KBM). Carbon dioxide production was initially lower in KBM (0.4 ± 0.2 L/min) than in TZM (0.5 ± 0.2 L/min) lions but increased over time in all groups. Oxygen consumption was 0.6 ± 0.2 L/min (TZM), 0.5 ± 0.2 L/min (KM) and 0.5 ± 0.2 L/min (KBM) and remained constant throughout the immobilization period. Initially the partial pressure of arterial oxygen was lower in KBM (74.0 ± 7.8 mmHg) than in TZM (78.5 ± 4.7 mmHg) lions, but increased to within expected range in all groups over time. The partial pressure of arterial carbon dioxide was higher throughout the immobilizations in KBM (34.5 ± 4.2 mmHg) than in TZM (32.6 ± 2.2 mmHg) and KM (32.6 ± 3.8 mmHg) lions. Alveolar-arterial gradients were initially elevated, but decreased over time for all groups, although in KM lions it remained elevated (26.9 ± 10.4 mmHg) above the expected normal. Overall, all three drug combinations caused minor respiratory and metabolic side-effects in the immobilized lions. However, initially hypoxaemia occurred as the drug combinations, and possibly the stress induced by the immobilization procedure, hinder alveoli oxygen gas exchange.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify