Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Coppelmans A"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Validity and Reliability of a Global Navigation Satellite System in Canoe Slalom
    (MDPI (Basel, Switzerland), 2022-01-21) Macdermid PW; Coppelmans A; Cochrane D; Keogh J
    This study investigates the usefulness of a 10 Hz GPS device for tracking scalar performance in canoe slalom through assessing the validity of automated-informed-aerial video tracking (30 fps and 10 fps) and GPS capability in relation to a known track. Additionally, a real-world (canoe-slalom). A comparison between manual-aerial video tracking (10 fps) and the 10 Hz GPS was performed. All three methods of tracking used during the dry-land test (30 fps or 10 fps video and GPS) reported significantly lower distances (−3.2, −5.1 and −8.5%, p < 0.0001) but were deemed useful based on sample rate and body positioning difference. Intra-method reliability was good (CV = 2.5−2.6%) but requires visual inspection for dataset errors. Informed-colour filtered automated tracking on-water was not possible, but manual tracking provided fewer dataset errors than dry-land automated tracking. GPS significantly (p < 0.0001) under reports distance travelled at key moments during real-world slalom with a bias ± SD of 2.26 ± 2.07 m compared to 10 fps manual-aerial video tracking. The aerial video combined with manual tracking proved most suitable for tracking canoe slalom athlete trajectory in a real-world setting but needs to be automated into an application-based package to make it useable for coaches. GPS, as presented, provides insight but does not accurately quantify movements critical in determining the performance of canoe slalom.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify