Browsing by Author "Cox MP"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- ItemAn informatics consult approach for generating clinical evidence for treatment decisions(BioMed Central Ltd, 2021-12) Lai AG; Chang WH; Parisinos CA; Katsoulis M; Blackburn RM; Shah AD; Nguyen V; Denaxas S; Davey Smith G; Gaunt TR; Nirantharakumar K; Cox MP; Forde D; Asselbergs FW; Harris S; Richardson S; Sofat R; Dobson RJB; Hingorani A; Patel R; Sterne J; Banerjee A; Denniston AK; Ball S; Sebire NJ; Shah NH; Foster GR; Williams B; Hemingway HBACKGROUND: An Informatics Consult has been proposed in which clinicians request novel evidence from large scale health data resources, tailored to the treatment of a specific patient. However, the availability of such consultations is lacking. We seek to provide an Informatics Consult for a situation where a treatment indication and contraindication coexist in the same patient, i.e., anti-coagulation use for stroke prevention in a patient with both atrial fibrillation (AF) and liver cirrhosis. METHODS: We examined four sources of evidence for the effect of warfarin on stroke risk or all-cause mortality from: (1) randomised controlled trials (RCTs), (2) meta-analysis of prior observational studies, (3) trial emulation (using population electronic health records (N = 3,854,710) and (4) genetic evidence (Mendelian randomisation). We developed prototype forms to request an Informatics Consult and return of results in electronic health record systems. RESULTS: We found 0 RCT reports and 0 trials recruiting for patients with AF and cirrhosis. We found broad concordance across the three new sources of evidence we generated. Meta-analysis of prior observational studies showed that warfarin use was associated with lower stroke risk (hazard ratio [HR] = 0.71, CI 0.39-1.29). In a target trial emulation, warfarin was associated with lower all-cause mortality (HR = 0.61, CI 0.49-0.76) and ischaemic stroke (HR = 0.27, CI 0.08-0.91). Mendelian randomisation served as a drug target validation where we found that lower levels of vitamin K1 (warfarin is a vitamin K1 antagonist) are associated with lower stroke risk. A pilot survey with an independent sample of 34 clinicians revealed that 85% of clinicians found information on prognosis useful and that 79% thought that they should have access to the Informatics Consult as a service within their healthcare systems. We identified candidate steps for automation to scale evidence generation and to accelerate the return of results. CONCLUSION: We performed a proof-of-concept Informatics Consult for evidence generation, which may inform treatment decisions in situations where there is dearth of randomised trials. Patients are surprised to know that their clinicians are currently not able to learn in clinic from data on 'patients like me'. We identify the key challenges in offering such an Informatics Consult as a service.
- ItemAuthor Correction: Dense sampling of bird diversity increases power of comparative genomics.(2021-04) Feng S; Stiller J; Deng Y; Armstrong J; Fang Q; Reeve AH; Xie D; Chen G; Guo C; Faircloth BC; Petersen B; Wang Z; Zhou Q; Diekhans M; Chen W; Andreu-Sánchez S; Margaryan A; Howard JT; Parent C; Pacheco G; Sinding M-HS; Puetz L; Cavill E; Ribeiro ÂM; Eckhart L; Fjeldså J; Hosner PA; Brumfield RT; Christidis L; Bertelsen MF; Sicheritz-Ponten T; Tietze DT; Robertson BC; Song G; Borgia G; Claramunt S; Lovette IJ; Cowen SJ; Njoroge P; Dumbacher JP; Ryder OA; Fuchs J; Bunce M; Burt DW; Cracraft J; Meng G; Hackett SJ; Ryan PG; Jønsson KA; Jamieson IG; da Fonseca RR; Braun EL; Houde P; Mirarab S; Suh A; Hansson B; Ponnikas S; Sigeman H; Stervander M; Frandsen PB; van der Zwan H; van der Sluis R; Visser C; Balakrishnan CN; Clark AG; Fitzpatrick JW; Bowman R; Chen N; Cloutier A; Sackton TB; Edwards SV; Foote DJ; Shakya SB; Sheldon FH; Vignal A; Soares AER; Shapiro B; González-Solís J; Ferrer-Obiol J; Rozas J; Riutort M; Tigano A; Friesen V; Dalén L; Urrutia AO; Székely T; Liu Y; Campana MG; Corvelo A; Fleischer RC; Rutherford KM; Gemmell NJ; Dussex N; Mouritsen H; Thiele N; Delmore K; Liedvogel M; Franke A; Hoeppner MP; Krone O; Fudickar AM; Milá B; Ketterson ED; Fidler AE; Friis G; Parody-Merino ÁM; Battley PF; Cox MP; Lima NCB; Prosdocimi F; Parchman TL; Schlinger BA; Loiselle BA; Blake JG; Lim HC; Day LB; Fuxjager MJ; Baldwin MW; Braun MJ; Wirthlin M; Dikow RB; Ryder TB; Camenisch G; Keller LF; DaCosta JM; Hauber ME; Louder MIM; Witt CC; McGuire JA; Mudge J; Megna LC; Carling MD; Wang B; Taylor SA; Del-Rio G; Aleixo A; Vasconcelos ATR; Mello CV; Weir JT; Haussler D; Li Q; Yang H; Wang J; Lei F; Rahbek C; Gilbert MTP; Graves GR; Jarvis ED; Paten B; Zhang GIn Supplementary Table 1 of this Article, 23 samples (B10K-DU-029-32, B10K-DU-029-33, B10K-DU-029-36 to B10K-DU-029-44, B10K-DU- 029-46, B10K-DU-029-47, B10K-DU-029-49 to B10K-DU-029-53, B10K-DU- 029-75 to B10K-DU-029-77, B10K-DU-029-80, and B10K-DU-030-03; styled in boldface in the revised table) were assigned to the incorrect institution. Supplementary Table 1 has been amended to reflect the correct source institution for these samples, and associated data (tissue, museum ID/source specimen ID, site, state/province, latitude, longitude, date collected and sex) have been updated accordingly. The original table is provided as Supplementary Information to this Amendment, and the original Article has been corrected online.
- ItemChromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families(Frontiers Media S.A., 2022-11-02) Cox MP; Guo Y; Winter DJ; Sen D; Cauldron NC; Shiller J; Bradley EL; Ganley AR; Gerth ML; Lacey RF; McDougal RL; Panda P; Williams NM; Grunwald NJ; Mesarich CH; Bradshaw RE; Hane JPhytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
- ItemComplex patterns of admixture across the Indonesian archipelago(1/10/2017) Hudjashov G; Karafet TM; Lawson DJ; Downey S; Savina O; Sudoyo H; Lansing JS; Hammer MF; Cox MPIndonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups.
- ItemCorrelated transcriptional responses provide insights into the synergy mechanisms of the furazolidone, vancomycin and sodium deoxycholate triple combination in Escherichia coli(American Society for Microbiology, 2021-10-27) Olivera C; Cox MP; Rowlands GJ; Rakonjac J; Bradford PAEffective therapeutic options are urgently needed to tackle antibiotic resistance. Furazolidone (FZ), vancomycin (VAN), and sodium deoxycholate (DOC) show promise as their combination can synergistically inhibit the growth of, and kill, multidrug-resistant Gram-negative bacteria that are classified as critical priority by the World Health Organization. Here, we investigated the mechanisms of action and synergy of this drug combination using a transcriptomics approach in the model bacterium Escherichia coli. We show that FZ and DOC elicit highly similar gene perturbations indicative of iron starvation, decreased respiration and metabolism, and translational stress. In contrast, VAN induced envelope stress responses, in agreement with its known role in peptidoglycan synthesis inhibition. FZ induces the SOS response consistent with its DNA-damaging effects, but we demonstrate that using FZ in combination with the other two compounds enables lower dosages and largely mitigates its mutagenic effects. Based on the gene expression changes identified, we propose a synergy mechanism where the combined effects of FZ, VAN, and DOC amplify damage to Gram-negative bacteria while simultaneously suppressing antibiotic resistance mechanisms. IMPORTANCE Synergistic antibiotic combinations are a promising alternative strategy for developing effective therapies for multidrug-resistant bacterial infections. The synergistic combination of the existing antibiotics nitrofurans and vancomycin with sodium deoxycholate shows promise in inhibiting and killing multidrug-resistant Gram-negative bacteria. We examined the mechanism of action and synergy of these three antibacterials and proposed a mechanistic basis for their synergy. Our results highlight much-needed mechanistic information necessary to advance this combination as a potential therapy.
- ItemCorrelated Transcriptional Responses Provide Insights into the Synergy Mechanisms of the Furazolidone, Vancomycin, and Sodium Deoxycholate Triple Combination in Escherichia coli.(27/10/2021) Olivera C; Cox MP; Rowlands GJ; Rakonjac JEffective therapeutic options are urgently needed to tackle antibiotic resistance. Furazolidone (FZ), vancomycin (VAN), and sodium deoxycholate (DOC) show promise as their combination can synergistically inhibit the growth of, and kill, multidrug-resistant Gram-negative bacteria that are classified as critical priority by the World Health Organization. Here, we investigated the mechanisms of action and synergy of this drug combination using a transcriptomics approach in the model bacterium Escherichia coli. We show that FZ and DOC elicit highly similar gene perturbations indicative of iron starvation, decreased respiration and metabolism, and translational stress. In contrast, VAN induced envelope stress responses, in agreement with its known role in peptidoglycan synthesis inhibition. FZ induces the SOS response consistent with its DNA-damaging effects, but we demonstrate that using FZ in combination with the other two compounds enables lower dosages and largely mitigates its mutagenic effects. Based on the gene expression changes identified, we propose a synergy mechanism where the combined effects of FZ, VAN, and DOC amplify damage to Gram-negative bacteria while simultaneously suppressing antibiotic resistance mechanisms. IMPORTANCE Synergistic antibiotic combinations are a promising alternative strategy for developing effective therapies for multidrug-resistant bacterial infections. The synergistic combination of the existing antibiotics nitrofurans and vancomycin with sodium deoxycholate shows promise in inhibiting and killing multidrug-resistant Gram-negative bacteria. We examined the mechanism of action and synergy of these three antibacterials and proposed a mechanistic basis for their synergy. Our results highlight much-needed mechanistic information necessary to advance this combination as a potential therapy.
- ItemDraft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant.(15/10/2015) Burgess SA; Cox MP; Flint SH; Lindsay D; Biggs PJThree strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G. stearothermophilus strains present in the milk powder manufacturing environment.
- ItemInfluence of management practice on the microbiota of a critically endangered species: a longitudinal study of kākāpō chick faeces and associated nest litter(BioMed Central, Ltd., 2022-09-30) West AG; Digby A; Lear G; Armstrong D; Armstrong-James D; Bromley M; Buckley E; Chatterton J; Cox MP; Cramer RA; Crane J; Dearden PK; Eason D; Fisher MC; Gago S; Gartrell B; Gemmell NJ; Glare TR; Guhlin J; Howard J; Lacap-Bugler D; Le Lec M; Lin XX; Lofgren L; Mackay J; Meis J; Morelli KA; Perrott J; Petterson M; Quinones-Mateu M; Rhodes J; Roberts J; Stajich J; Taylor MW; Tebbutt SJ; Truter-Meyer A; Uddstrom L; Urban L; van Rhijn N; Vercoe D; Vesely E; Weir BS; Winter DJ; Yeung JBackground: The critically endangered kākāpō is a flightless, nocturnal parrot endemic to Aotearoa New Zealand. Recent efforts to describe the gastrointestinal microbial community of this threatened herbivore revealed a low-diversity microbiota that is often dominated by Escherichia-Shigella bacteria. Given the importance of associated microbial communities to animal health, and increasing appreciation of their potential relevance to threatened species conservation, we sought to better understand the development of this unusual gut microbiota profile. To this end, we conducted a longitudinal analysis of faecal material collected from kākāpō chicks during the 2019 breeding season, in addition to associated nest litter material. Results: Using an experimental approach rarely seen in studies of threatened species microbiota, we evaluated the impact of a regular conservation practice on the developing kākāpō microbiota, namely the removal of faecal material from nests. Artificially removing chick faeces from nests had negligible impact on bacterial community diversity for either chicks or nests (p > 0.05). However, the gut microbiota did change significantly over time as chick age increased (p < 0.01), with an increasing relative abundance of Escherichia-Shigella coli over the study period and similar observations for the associated nest litter microbiota (p < 0.01). Supplementary feeding substantially altered gut bacterial diversity of kākāpō chicks (p < 0.01), characterised by a significant increase in Lactobacillus bacteria. Conclusions: Overall, chick age and hand rearing conditions had the most marked impact on faecal bacterial communities. Similarly, the surrounding nest litter microbiota changed significantly over time since a kākāpō chick was first placed in the nest, though we found no evidence that removal of faecal material influenced the bacterial communities of either litter or faecal samples. Taken together, these observations will inform ongoing conservation and management of this most enigmatic of bird species.
- ItemInsights into the Geobacillus stearothermophilus species based on phylogenomic principles.(26/06/2017) Burgess SA; Flint SH; Lindsay D; Cox MP; Biggs PJBACKGROUND: The genus Geobacillus comprises bacteria that are Gram positive, thermophilic spore-formers, which are found in a variety of environments from hot-springs, cool soils, to food manufacturing plants, including dairy manufacturing plants. Despite considerable interest in the use of Geobacillus spp. for biotechnological applications, the taxonomy of this genus is unclear, in part because of differences in DNA-DNA hybridization (DDH) similarity values between studies. In addition, it is also difficult to use phenotypic characteristics to define a bacterial species. For example, G. stearothermophilus was traditionally defined as a species that does not utilise lactose, but the ability of dairy strains of G. stearothermophilus to use lactose has now been well established. RESULTS: This study compared the genome sequences of 63 Geobacillus isolates and showed that based on two different genomic approaches (core genome comparisons and average nucleotide identity) the Geobacillus genus could be divided into sixteen taxa for those Geobacillus strains that have genome sequences available thus far. In addition, using Geobacillus stearothermophilus as an example, we show that inclusion of the accessory genome, as well as phenotypic characteristics, is not suitable for defining this species. For example, this is the first study to provide evidence of dairy adaptation in G. stearothermophilus - a phenotypic feature not typically considered standard in this species - by identifying the presence of a putative lac operon in four dairy strains. CONCLUSIONS: The traditional polyphasic approach of combining both genotypic and phenotypic characteristics to define a bacterial species could not be used for G. stearothermophilus where many phenotypic characteristics vary within this taxon. Further evidence of this discordant use of phenotypic traits was provided by analysis of the accessory genome, where the dairy strains contained a putative lac operon. Based on the findings from this study, we recommend that novel bacterial species should be defined using a core genome approach.
- ItemInvestigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles(29/01/2018) Hudjashov G; Endicott P; Post H; Nagle N; Ho SYW; Lawson DJ; Reidla M; Karmin M; Rootsi S; Metspalu E; Saag L; Villems R; Cox MP; Mitchell RJ; Garcia-Bertrand RL; Metspalu M; Herrera RJThe debate concerning the origin of the Polynesian speaking peoples has been recently reinvigorated by genetic evidence for secondary migrations to western Polynesia from the New Guinea region during the 2nd millennium BP. Using genome-wide autosomal data from the Leeward Society Islands, the ancient cultural hub of eastern Polynesia, we find that the inhabitants' genomes also demonstrate evidence of this episode of admixture, dating to 1,700-1,200 BP. This supports a late settlement chronology for eastern Polynesia, commencing ~1,000 BP, after the internal differentiation of Polynesian society. More than 70% of the autosomal ancestry of Leeward Society Islanders derives from Island Southeast Asia with the lowland populations of the Philippines as the single largest potential source. These long-distance migrants into Polynesia experienced additional admixture with northern Melanesians prior to the secondary migrations of the 2nd millennium BP. Moreover, the genetic diversity of mtDNA and Y chromosome lineages in the Leeward Society Islands is consistent with linguistic evidence for settlement of eastern Polynesia proceeding from the central northern Polynesian outliers in the Solomon Islands. These results stress the complex demographic history of the Leeward Society Islands and challenge phylogenetic models of cultural evolution predicated on eastern Polynesia being settled from Samoa.
- ItemThe Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi(BioMed Central Ltd, 2022-12) Rocafort M; Bowen JK; Hassing B; Cox MP; McGreal B; de la Rosa S; Plummer KM; Bradshaw RE; Mesarich CHBACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.
- ItemThe Venturia inaequalis effector repertoire is expressed in waves and is dominated by expanded families with predicted structural similarity to avirulence proteins from other plant-pathogenic fungi(2022-09-22) Rocafort M; Bowen JK; Hassing B; Cox MP; McGreal B; de la Rosa S; Plummer KM; Bradshaw RE; Mesarich CH