- Browse by Author

### Browsing by Author "Hunter, Jeffrey J."

Now showing 1 - 8 of 8

###### Results Per Page

###### Sort Options

- ItemBounds on expected coupling times in Markov chains(Massey University, 2008) Hunter, Jeffrey J.
Show more In the author’s paper “Coupling and Mixing Times in Markov Chains” (RLIMS, 11, 1- 22, 2007) it was shown that it is very difficult to find explicit expressions for the expected time to coupling in a general Markov chain. In this paper simple upper and lower bounds are given for the expected time to coupling in a discrete time finite Markov chain. Extensions to the bounds under additional restrictive conditions are also given with detailed comparisons provided for two and three state chains.Show more - ItemCoupling and mixing times in a Markov Chains [sic](Massey University, 2007) Hunter, Jeffrey J.
Show more The derivation of the expected time to coupling in a Markov chain and its relation to the expected time to mixing (as introduced by the author in “Mixing times with applications to perturbed Markov chains” Linear Algebra Appl. (417, 108-123 (2006)) are explored. The two-state cases and three-state cases are examined in detail.Show more - Item
- ItemGeneralized inverses, stationary distributions and mean first passage times with applications to perturbed Markov chains(Massey University, 2002) Hunter, Jeffrey J.
Show more In an earlier paper (Hunter, 2002) it was shown that mean first passage times play an important role in determining bounds on the relative and absolute differences between the stationary probabilities in perturbed finite irreducible discrete time Markov chains. Further when two perturbations of the transition probabilities in a single row are carried out the differences between the stationary probabilities in the unperturbed and perturbed situations are easily expressed in terms of a reduced number of mean first passage times. Using this procedure we provide an updating procedure for mean first passage times to determine changes in the stationary distributions under successive perturbations. Simple procedures for determining both stationary distributions and mean first passage times in a finite irreducible Markov chain are also given. The techniques used in the paper are based upon the application of generalized matrix inverses.Show more - ItemMarkovian queues with correlated arrival processes(Massey University, 2005) Hunter, Jeffrey J.
Show more In an attempt to examine the effect of dependencies in the arrival process on the steady state queue length process in single server queueing models with exponential service time distribution, four different models for the arrival process, each with marginally distributed exponential interarrivals to the queueing system, are considered. Two of these models are based upon the upper and lower bounding joint distribution functions given by the Fréchet bounds for bivariate distributions with specified marginals, the third is based on Downton’s bivariate exponential distribution and fourthly the usual M/M/1 model. The aim of the paper is to compare conditions for stability and explore the queueing behaviour of the different models.Show more - ItemSimple procedures for finding mean first passage times in Markov chains(Massey University, 2005) Hunter, Jeffrey J.
Show more The derivation of mean first passage times in Markov chains involves the solution of a family of linear equations. By exploring the solution of a related set of equations, using suitable generalized inverses of the Markovian kernel I – P, where P is the transition matrix of a finite irreducible Markov chain, we are able to derive elegant new results for finding the mean first passage times. As a by-product we derive the stationary distribution of the Markov chain without the necessity of any further computational procedures. Standard techniques in the literature, using for example Kemeny and Snell’s fundamental matrix Z, require the initial derivation of the stationary distribution followed by the computation of Z, the inverse I – P + eπT where eT = (1, 1, …,1) and πT is the stationary probability vector. The procedures of this paper involve only the derivation of the inverse of a matrix of simple structure, based upon known characteristics of the Markov chain together with simple elementary vectors. No prior computations are required. Various possible families of matrices are explored leading to different related procedures.Show more - ItemStationary distributions and mean first passage times of perturbed Markov chains(Massey University, 2002) Hunter, Jeffrey J.
Show more Stationary distributions of perturbed finite irreducible discrete time Markov chains are intimately connected with the behaviour of associated mean first passage times. This interconnection is explored through the use of generalized matrix inverses. Some interesting qualitative results regarding the nature of the relative and absolute changes to the stationary probabilities are obtained together with some improved bounds.Show more - ItemA survey of generalized inverses and their use in stochastic modelling(Massey University, 2000) Hunter, Jeffrey J.
Show more In many stochastic models, in particular Markov chains in discrete or continuous time and Markov renewal processes, a Markov chain is present either directly or indirectly through some form of embedding. The analysis of many problems of interest associated with these models, eg. stationary distributions, moments of first passage time distributions and moments of occupation time random variables, often concerns the solution of a system of linear equations involving I – P, where P is the transition matrix of a finite, irreducible, discrete time Markov chain. Generalized inverses play an important role in the solution of such singular sets of equations. In this paper we survey the application of generalized inverses to the aforementioned problems. The presentation will include results concerning the analysis of perturbed systems and the characterization of types of generalized inverses associated with Markovian kernels.Show more