Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Murata GM"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Autophagy signaling in hypertrophied muscles of diabetic and control rats.
    (John Wiley and Sons Ltd on behalf of Federation of European Biochemical Societies., 2023-07-20) Scervino MVM; Fortes MAS; Vitzel KF; de Souza DR; Murata GM; Santana GO; da Silva EB; Levada-Pires AC; Kuwabara WMT; Loureiro TCA; Curi R; Krützfeldt J
    Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM). EDL muscles showed increased levels of basal autophagy signaling proteins. The diabetic state did not affect the extent of overload-induced hypertrophy or the levels of autophagy signaling proteins (p-ULK1, Beclin-1, Atg5, Atg12-5, Atg7, Atg3, LC3-I and II, and p62) in either muscle. The p-ULK-1, Beclin-1, and p62 protein expression levels were higher in the EDL muscle than in the soleus before the hypertrophic stimulus. On the contrary, the soleus muscle exhibited increased autophagic signaling after overload-induced hypertrophy, with increases in Beclin-1, Atg5, Atg12-5, Atg7, Atg3, and LC3-I expression in the control and diabetic groups, in addition to p-ULK-1 in the control groups. After hypertrophy, Beclin-1 and Atg5 levels increased in the EDL muscle of both groups, while p-ULK1 and LC3-I increased in the control group. In conclusion, the baseline EDL muscle exhibited higher autophagy than the soleus muscle. Although TDM1 promotes skeletal muscle mass loss and strength reduction, it did not significantly alter the extent of overload-induced hypertrophy and autophagy signaling proteins in EDL and soleus muscles, with the two groups exhibiting different patterns of autophagy activation.
  • Loading...
    Thumbnail Image
    Item
    Changes in Skeletal Muscle Protein Metabolism Signaling Induced by Glutamine Supplementation and Exercise.
    (MDPI (Basel, Switzerland), 2023-11-07) Rodrigues Junior CF; Murata GM; Gerlinger-Romero F; Nachbar RT; Marzuca-Nassr GN; Gorjão R; Vitzel KF; Hirabara SM; Pithon-Curi TC; Curi R; Lemon PWR
    AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.
  • Loading...
    Thumbnail Image
    Item
    Endoplasmic Reticulum Stress and Autophagy Markers in Soleus Muscle Disuse-Induced Atrophy of Rats Treated with Fish Oil
    (MDPI (Basel, Switzerland), 2021-07) Marzuca-Nassr GN; Kuwabara WMT; Vitzel KF; Murata GM; Torres RP; Mancini-Filho J; Alba-Loureiro TC; Curi R
    Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle ω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings