Browsing by Author "Perrott M"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemIdentification of a novel polyomavirus from a marsupial host(Oxford University Press, 2022-10-06) Dunowska M; Perrott M; Biggs PWe report the identification and analysis of a full sequence of a novel polyomavirus from a brushtail possum (Trichosurus vulpecula) termed possum polyomavirus (PPyV). The sequence was obtained from the next-generation sequencing assembly during an investigation into the aetiological agent for a neurological disease of possums termed wobbly possum disease (WPD), but the virus was not aetiologically involved in WPD. The PPyV genome was 5,224 nt long with the organisation typical for polyomaviruses, including early (large and small T antigens) and late (Viral Protein 1 (VP1), VP2, and VP3) coding regions separated by the non-coding control region of 465 nt. PPyV clustered with betapolyomaviruses in the WUKI clade but showed less than 60 per cent identity to any of the members of this clade. We propose that PPyV is classified within a new species in the genus Betapolyomavirus. These data add to our limited knowledge of marsupial viruses and their evolution.
- ItemThe efficacy of electrical stunning of New Zealand rock lobster (Jasus edwardsii) and freshwater crayfish (Paranephrops zealandicus) using the Crustastun™(Cambridge University Press on behalf of The Universities Federation for Animal Welfare, 2023-09-22) Kells NJ; Perrott M; Johnson CLarge numbers of decapod crustacea are farmed and harvested globally for human consumption. Growing evidence for the capacity of these animals to feel pain, and therefore to suffer, has led to increased concern for their welfare, including at slaughter. In New Zealand, decapod crustacea are protected by animal welfare legislation. There is a requirement that all farmed or commercially caught animals of these species killed for commercial purposes are first rendered insensible. The aim of this study was to evaluate the efficacy of the Crustastun™, a commercially available bench-top electrical stunner, in two commercially important New Zealand crustacean species; the rock lobster (Jasus edwardsii) and kōura (freshwater crayfish [Paranephrops zealandicus]). Animals were anaesthetised via intramuscular injection of lidocaine and instrumented to record the electrical activity of the nervous system, prior to being stunned according to the manufacturer’s instructions. Stunning efficacy was determined by analysing neural activity and observing behaviour post stunning. All ten P. zealandicus and three J. edwardsii appeared to be killed outright by the stun. Of the remaining J. edwardsii, six exhibited some degree of muscle tone and/or slow unco-ordinated movements of the limbs or mouthparts after stunning, although there was no recovery of spontaneous or evoked movements. One J. edwardsii was unable to be stunned successfully, likely due to its very large size (1.76 kg). None of the successfully stunned animals showed any evidence of return of awareness in the five minutes following stunning. It was concluded that the Crustastun™ is an acceptable method for killing P. zealandicus and for stunning all but the largest J. edwardsii.