Browsing by Author "Roberts MG"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemCarriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households.(American Society for Microbiology, 24/11/2020) Toombs-Ruane LJ; Benschop J; French NP; Biggs PJ; Midwinter AC; Marshall JC; Chan M; Drinković D; Fayaz A; Baker MG; Douwes J; Roberts MG; Burgess SAExtended-spectrum-beta-lactamase (ESBL)- or AmpC beta-lactamase (ACBL)-producing Escherichia coli bacteria are the most common cause of community-acquired multidrug-resistant urinary tract infections (UTIs) in New Zealand. The carriage of antimicrobial-resistant bacteria has been found in both people and pets from the same household; thus, the home environment may be a place where antimicrobial-resistant bacteria are shared between humans and pets. In this study, we sought to determine whether members (pets and people) of the households of human index cases with a UTI caused by an ESBL- or ACBL-producing E. coli strain also carried an ESBL- or ACBL-producing Enterobacteriaceae strain and, if so, whether it was a clonal match to the index case clinical strain. Index cases with a community-acquired UTI were recruited based on antimicrobial susceptibility testing of urine isolates. Fecal samples were collected from 18 non-index case people and 36 pets across 27 households. Eleven of the 27 households screened had non-index case household members (8/18 people and 5/36 animals) positive for ESBL- and/or ACBL-producing E. coli strains. Whole-genome sequence analysis of 125 E. coli isolates (including the clinical urine isolates) from these 11 households showed that within seven households, the same strain of ESBL-/ACBL-producing E. coli was cultured from both the index case and another person (5/11 households) or pet dog (2/11 households). These results suggest that transmission within the household may contribute to the community spread of ESBL- or ACBL-producing E. coliIMPORTANCEEnterobacteriaceae that produce extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (ACBLs) are important pathogens and can cause community-acquired illnesses, such as urinary tract infections (UTIs). Fecal carriage of these resistant bacteria by companion animals may pose a risk for transmission to humans. Our work evaluated the sharing of ESBL- and ACBL-producing E. coli isolates between humans and companion animals. We found that in some households, dogs carried the same strain of ESBL-producing E. coli as the household member with a UTI. This suggests that transmission events between humans and animals (or vice versa) are likely occurring within the home environment and, therefore, the community as a whole. This is significant from a health perspective, when considering measures to minimize community transmission, and highlights that in order to manage community spread, we need to consider interventions at the household level.
- ItemExtended-spectrum β-lactamase- and AmpC β-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study(Elsevier Ltd on behalf of International Society for Infectious Diseases, 2023-03) Toombs-Ruane LJ; Marshall JC; Benschop J; Drinković D; Midwinter AC; Biggs PJ; Grange Z; Baker MG; Douwes J; Roberts MG; French NP; Burgess SAOBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum β-lactamase (ESBL)- or AmpC β-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.
- ItemHow immune dynamics shape multi-season epidemics: a continuous-discrete model in one dimensional antigenic space.(Springer, 2024-03-27) Roberts MG; Hickson RI; McCaw JMWe extend a previously published model for the dynamics of a single strain of an influenza-like infection. The model incorporates a waning acquired immunity to infection and punctuated antigenic drift of the virus, employing a set of coupled integral equations within a season and a discrete map between seasons. The long term behaviour of the model is demonstrated by examples where immunity to infection depends on the time since a host was last infected, and where immunity depends on the number of times that a host has been infected. The first scenario leads to complicated dynamics in some regions of parameter space, and to regions of parameter space with more than one attractor. The second scenario leads to a stable fixed point, corresponding to an identical epidemic each season. We also examine the model with both paradigms in combination, almost always but not exclusively observing a stable fixed point or periodic solution. Adding stochastic perturbations to the between season map fails to destroy the model's qualitative dynamics. Our results suggest that if the level of host immunity depends on the elapsed time since the last infection then the epidemiological dynamics may be unpredictable.
- ItemInfection dynamics in ecosystems: on the interaction between red and grey squirrels, pox virus, pine martens and trees(The Royal Society Publishing, 2021-10) Roberts MG; Heesterbeek JAPEcological and epidemiological processes and interactions influence each other, positively and negatively, directly and indirectly. The invasion potential of pathogens is influenced by the ecosystem context of their host species’ populations. This extends to the capacity of (multiple) host species to maintain their (common) pathogen and the way pathogen dynamics are influenced by changes in ecosystem composition. This paper exemplifies these interactions and consequences in a study of red and grey squirrel dynamics in the UK. Differences and changes in background habitat and trophic levels above and below the squirrel species lead to different dynamic behaviour in many subtle ways. The range of outcomes of the different interactions shows that one has to be careful when drawing conclusions about the mechanisms and processes involved in explaining observed phenomena concerning pathogens in their natural environment. The dynamic behaviour also shows that planning interventions, for example for conservation purposes, benefits from understanding the complexity of interactions beyond the particular pathogen and its threatened host species.
- ItemInfection thresholds for two interacting pathogens in a wild animal population.(Elsevier B.V., 2024-07-17) Roberts MGWe present a model for the dynamics of two interacting pathogen variants in a wild animal host population. Using the next-generation matrix approach we define the invasion threshold for one pathogen variant when the other is already established and at steady state. We then provide explicit criteria for the special cases where: i) the two pathogen variants exclude each other; ii) one variant excludes the other; iii) the population dynamics of hosts infected with both variants are independent of the order of infection; iv) there is no interaction between the variants; and v) one variant enhances transmission of the other.