Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Soh BXP"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Achieving High Protein Quality Is a Challenge in Vegan Diets: A Narrative Review.
    (Oxford University Press, 2024-12-11) Soh BXP; Smith NW; von Hurst PR; McNabb WC
    The transition toward plant-based (PB) diets has gained attention as a plausible step toward achieving sustainable and healthy dietary goals. However, the complete elimination of all animal-sourced foods from the diet (ie, a vegan diet) may have nutritional ramifications that warrant close examination. Two such concerns are the adequacy and bioavailability of amino acids (AAs) from plant-sourced foods and the consequences for older vegan populations who have elevated AA requirements. This narrative review describes the challenges of achieving high protein quality from vegan diets. Data were synthesized from peer-reviewed research articles and reviews. Plant-sourced proteins provide poorer distribution of indispensable AAs (IAAs) and have poorer digestibility, partly due to their inherent structural components within the food matrix. The review addresses complexities of combinations of varied plant protein sources and why the inclusion of novel PB alternatives adds uncertainty to the achievement of adequate protein adequacy. Meal distribution patterns of protein and the ensuing physiological impacts deserve further research and are outlined in this review. Particular attention is given to describing the challenges of achieving sufficient protein and IAA intakes by aging populations who choose to follow a vegan diet. This review contributes to the emerging discussions of nutritional risks associated with vegan diets and adds perspective to the current dietary shifts toward PB diets.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of Protein Adequacy From Plant-Based Dietary Scenarios in Simulation Studies: A Narrative Review
    (Elsevier Inc on behalf of the American Society for Nutrition, 2024-02) Soh BXP; Smith NW; R von Hurst P; McNabb WC
    Although a diet high in plant foods can provide beneficial nutritional outcomes, unbalanced and restrictive plant-based diets may cause nutrient deficiencies. Protein intake from these diets is widely discussed, but the comparison of animal and plant proteins often disregards amino acid composition and digestibility as measurements of protein quality. Poor provision of high-quality protein may result in adverse outcomes, especially for individuals with increased nutrient requirements. Several dietary modeling studies have examined protein adequacy when animal-sourced proteins are replaced with traditional and novel plant proteins, but no review consolidating these findings are available. This narrative review aimed to summarize the approaches of modeling studies for protein intake and protein quality when animal-sourced proteins are replaced with plant foods in diet simulations and examine how these factors vary across age groups. A total of 23 studies using dietary models to predict protein contribution from plant proteins were consolidated and categorized into the following themes-protein intake, protein quality, novel plant-based alternatives, and plant-based diets in special populations. Protein intake from plant-based diet simulations was lower than from diets with animal-sourced foods but met country-specific nutrient requirements. However, protein adequacy from some plant-sourced foods were not met for simulated diets of children and older adults. Reduced amino acid adequacy was observed with increasing intake of plant foods in some scenarios. Protein adequacy was generally dependent on the choice of substitution with legumes, nuts, and seeds providing greater protein intake and quality than cereals. Complete replacement of animal to plant-sourced foods reduced protein adequacy when compared with baseline diets and partial replacements.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of protein intake and protein quality in New Zealand vegans
    (PLOS, 2025-04-16) Soh BXP; Vignes M; Smith NW; Von Hurst PR; McNabb WC; Tomaszewska E
    Dietary protein provides indispensable amino acids (IAAs) that the body cannot synthesise. Past assessments of total protein intake from vegan populations in western, developed countries were found to be low but not necessarily below daily requirements. However, plant-sourced proteins generally have lower quantities of digestible IAAs as compared to animal-sourced proteins. Simply accounting for protein intake without considering AA profile and digestibility could overestimate protein adequacy among vegans. This study quantified protein intake and quality, as compared to reference intake values among 193 NZ vegans using a four-day food diary. Protein and IAA composition of all foods were derived from New Zealand FoodFiles and the United States Department of Agriculture and adjusted for True Ileal Digestibility (TID). Mean protein intakes for males and females were 0.98 and 0.80g/kg/day, respectively with 78.8% of males and 73.0% of females meeting the Estimated Average Requirement for protein. Plant-sourced proteins provided 52.9mg of leucine and 35.7mg of lysine per gram of protein and were below the reference scoring patterns (leucine: 59mg/g, lysine: 45mg/g). When adjusted to individual body weight, average IAA intakes were above daily requirements, but lysine just met requirements at 31.0mg/kg of body weight/day (reference: 30mg/kg/day). Upon TID adjustment, the percentage of vegans meeting adequacy for protein and IAA decreased and only approximately 50% of the cohort could meet lysine and leucine requirements. Hence, lysine and leucine were the most limiting IAAs in the vegan cohort’s diet. Legumes and pulses contributed most to overall protein and lysine intake. An increased proportion of legumes and pulses can potentially increase these intakes but must be considered in the context of the whole diet. AA composition and digestibility are important aspects of protein quality when assessing protein adequacy and is of particular importance in restrictive diets.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings