Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Mapping immunogenic epitopes of an adhesin-like protein from Methanobrevibacter ruminantium M1 and comparison of empirical data with in silico prediction methods.
    (Springer Nature Limited, 2022-06-21) Khanum S; Carbone V; Gupta SK; Yeung J; Shu D; Wilson T; Parlane NA; Altermann E; Estein SM; Janssen PH; Wedlock DN; Heiser A
    In silico prediction of epitopes is a potentially time-saving alternative to experimental epitope identification but is often subject to misidentification of epitopes and may not be useful for proteins from archaeal microorganisms. In this study, we mapped B- and T-cell epitopes of a model antigen from the methanogen Methanobrevibacter ruminantium M1, the Big_1 domain (AdLP-D1, amino acids 19-198) of an adhesin-like protein. A series of 17 overlapping 20-mer peptides was selected to cover the Big_1 domain. Peptide-specific antibodies were produced in mice and measured by ELISA, while an in vitro splenocyte re-stimulation assay determined specific T-cell responses. Overall, five peptides of the 17 peptides were shown to be major immunogenic epitopes of AdLP-D1. These immunogenic regions were examined for their localization in a homology-based model of AdLP-D1. Validated epitopes were found in the outside region of the protein, with loop like secondary structures reflecting their flexibility. The empirical data were compared with epitope predictions made by programmes based on a range of algorithms. In general, the epitopes identified by in silico predictions were not comparable to those determined empirically.
  • Item
    Structural characterization of a PCP-R didomain from an archaeal nonribosomal peptide synthetase reveals novel interdomain interactions
    (Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology, 2021-02-17) Deshpande S; Altermann E; Sarojini V; Lott JS; Lee TV; Jez J
    Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes that produce a wide range of bioactive peptides, such as siderophores, toxins, and antibacterial and insecticidal agents. NRPSs are dynamic proteins characterized by extensive interdomain communications as a consequence of their assembly-line mode of synthesis. Hence, crystal structures of multidomain fragments of NRPSs have aided in elucidating crucial interdomain interactions that occur during different steps of the NRPS catalytic cycle. One crucial yet unexplored interaction is that between the reductase (R) domain and the peptide carrier protein (PCP) domain. R domains are members of the short-chain dehydrogenase/reductase family and function as termination domains that catalyze the reductive release of the final peptide product from the terminal PCP domain of the NRPS. Here, we report the crystal structure of an archaeal NRPS PCP-R didomain construct. This is the first NRPS R domain structure to be determined together with the upstream PCP domain and is also the first structure of an archaeal NRPS to be reported. The structure reveals that a novel helix-turn-helix motif, found in NRPS R domains but not in other short-chain dehydrogenase/reductase family members, plays a major role in the interface between the PCP and R domains. The information derived from the described PCP-R interface will aid in gaining further mechanistic insights into the peptide termination reaction catalyzed by the R domain and may have implications in engineering NRPSs to synthesize novel peptide products.