Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
Search Results
Item Does chronic oral contraceptive use detrimentally affect C-reactive protein or iron status for endurance-trained women?(Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society., 2023-07-24) Badenhorst CE; Govus AD; Mündel TPURPOSE: Chronic use of the oral contraceptive pill (OCP) is reported to increase C-reactive protein (CRP) levels and increase the risk of cardiovascular disease in premenopausal females. METHODS: A secondary analysis of data from two research studies in eumenorrheic (n = 8) and OCP (n = 8) female athletes. Basal CRP and iron parameters were included in the analysis. Sample collection occurred following a standardized exercise and nutritional control for 24 h. Eumenorrheic females were tested in the early-follicular and mid-luteal phases, and the OCP users were tested in quasi-follicular and quasi-luteal phases (both active pill periods). RESULTS: A main effect for group (p < 0.01) indicated that average CRP concentration was higher in OCP users compared with eumenorrheic females, regardless of the day of measurement within the cycle. Results demonstrate a degree of iron parameters moderation throughout the menstrual cycle that is influenced by basal CRP levels; however, no linear relationship with CRP, serum iron, and ferritin was observed. CONCLUSIONS: Basal CRP values were consistently higher in the OCP group despite participants being in a rested state. These results may indicate a potential risk of cardiovascular disease in prolonged users of the OCP when compared to eumenorrheic female athletes.Item Relationship between vitamin D, iron, and hepcidin in premenopausal females, potentially confounded by ethnicity.(Springer Nature, 2023-08-29) Greenwood A; Von Hurst PR; Beck KL; Mazahery H; Lim K; Badenhorst CEPURPOSE: To investigate the associations between vitamin D, hepcidin, and iron status in premenopausal females of different ethnic cohorts residing in Auckland, New Zealand (NZ). METHODS: A total of 160 females aged 18-45 years participated in a cross-sectional study. Demographics, body composition, serum 25(OH)D, inflammatory markers (C-reactive protein and interleukin-6, IL-6), and iron biomarkers (serum ferritin, haemoglobin, soluble transferrin receptor, and hepcidin) were measured. Comparisons between parametric, non-parametric, and categorical variables were completed by using one-way ANOVA, Kruskal-Wallis, and Chi-squared tests, respectively. ANCOVA was used to compare serum 25(OH)D across iron parameter categories. RESULTS: Of the 160 participants, 60 were NZ European, 67 were South Asian, and 33 were from the 'other' ethnic groups. South Asians had significantly higher body fat percentage (BF%) and IL-6 concentration (38.34% and 1.66 pg·mL-1, respectively), compared to NZ Europeans (27.49% and 0.63 pg·mL-1, respectively, p < 0.001). South Asians had significantly lower 25(OH)D concentrations compared to NZ Europeans (33.59 nmol·L-1 vs 74.84 nmol·L-1, p < 0.001). In NZ Europeans, higher 25(OH)D concentration was seen in those with lower (≤ 3.5 nM) hepcidin concentration, p = 0.0046. In South Asians, higher 25(OH)D concentration was seen in those with higher (> 3.5 nM) hepcidin concentrations, p = 0.038. There were no associations between serum 25(OH)D and serum ferritin. CONCLUSION: Within South Asian women, an unexpected positive relationship between 25(OH)D and hepcidin concentration was observed which may be due to significantly higher IL-6 concentrations, BF%, and lower 25(OH)D concentrations. Future research is required to confirm these observations in this ethnic cohort.Item Effect of Amino Acid Supplementation on Iron Regulation after Endurance Exercise.(MDPI (Basel, Switzerland), 2023-11-25) Lin C-A; Hayashi N; Badenhorst CE; Goto K; Rowlands DThe purpose of this study was to determine the effects of pre-exercise amino acid (AA) supplementation on post-exercise iron regulation. Ten healthy males participated under two different sets of conditions in a randomized, double-blind, crossover design with a washout period of at least 21 days. Participants received either an AA supplement or placebo (PLA) for five consecutive days (4 g/dose, 3 doses/day). On the sixth day, participants ran on a treadmill for 60 min at 70% of maximal oxygen consumption (V˙O2max). Venous blood samples were collected before (baseline), immediately after, and 1 and 3 h after exercise. The serum hepcidin levels increased significantly 3 h post-exercise in both trials when compared to the baseline (p < 0.001), but the levels were not different between trials. The plasma interleukin-6 (IL-6) level significantly increased immediately after exercise compared to the baseline (p < 0.001) and was significantly higher in the AA trial than in the PLA trial (p = 0.014). Moreover, the exercise-induced increase in serum glycerol level was significantly higher in the AA trial (21.20 ± 3.98 mg/L) than in the PLA trial (17.28 ± 4.47 mg/L, p = 0.017). No significant differences were observed between the AA and PLA trials for serum iron, ferritin, and total ketone body levels (p > 0.05). In conclusion, five days of AA supplementation augmented exercise-induced increases in IL-6 and glycerol in healthy males. However, it did not affect post-exercise iron status or regulation.
