Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Investigation of Energy Cost of Data Compression Algorithms in WSN for IoT Applications
    (MDPI (Basel, Switzerland), 2022-10-10) Mishra M; Sen Gupta G; Gui X; García Ó
    The exponential growth in remote sensing, coupled with advancements in integrated circuits (IC) design and fabrication technology for communication, has prompted the progress of Wireless Sensor Networks (WSN). WSN comprises of sensor nodes and hubs fit for detecting, processing, and communicating remotely. Sensor nodes have limited resources such as memory, energy and computation capabilities restricting their ability to process large volume of data that is generated. Compressing the data before transmission will help alleviate the problem. Many data compression methods have been proposed but mainly for image processing and a vast majority of them are not pertinent on sensor nodes because of memory impediment, energy utilization and handling speed. To overcome this issue, authors in this research have chosen Run Length Encoding (RLE) and Adaptive Huffman Encoding (AHE) data compression techniques as they can be executed on sensor nodes. Both RLE and AHE are capable of balancing compression ratio and energy utilization. In this paper, a hybrid method comprising RLE and AHE, named as H-RLEAHE, is proposed and further investigated for sensor nodes. In order to verify the efficacy of the data compression algorithms, simulations were run, and the results compared with the compression techniques employing RLE, AHE, H-RLEAHE, and without the use of any compression approach for five distinct scenarios. The results demonstrate the RLE's efficiency, as it surpasses alternative data compression methods in terms of energy efficiency, network speed, packet delivery rate, and residual energy throughout all iterations.
  • Item
    Characterization and comparative evaluation of novel planar electromagnetic sensors
    (IEEE Magnetics Society, 2005) Mukhopadhyay SC; Gooneratne CP; Sen Gupta G; Yamada S
    The characterization of three types of novel planar electromagnetic sensors: 1) meander; 2) mesh; and 3) interdigital configuration, has been studied and their comparative performance has been evaluated based on their areas of applications. All of them are suitable for inspection and evaluation of system properties without destroying them. The experiments on fabricated sensors have been conducted and the results are presented here. The target application is to use a mixture of different types of sensors to detect plastic landmines. © 2005 IEEE.
  • Item
    A low-cost sensing system for quality monitoring of dairy products
    (IEEE, 2006) Mukhopadhyay SC; Gooneratne CP; Sen Gupta G; Demidenko SN
    The dairy industry is in need of a cost-effective, highly reliable, very accurate, and fast measurement system to monitor the quality of dairy products. This paper describes the design and fabrication works undertaken to develop such a system. The techniques used center around planar electromagnetic sensors operating with radio frequency excitation. Computer-aided computation, being fast, facilitates on-line monitoring of the quality. The sensor technology proposed has the ability to perform volumetric penetrative measurements to measure properties throughout the bulk of the product. © 2006 IEEE.
  • Item
    Novel adaptive transmission protocol for mobile sensors that improves energy efficiency and removes the limitation of state based adaptive power control protocol (SAPC)
    (MDPI AG, 15/03/2017) Basu D; Sen Gupta G; Moretti G; Gui X
    In this paper, we have presented a novel transmission protocol which is suited for battery-powered sensors that are worn by a patient when under medical treatment, and allow constant monitoring of health indices. These body-wearable sensors log data from the patient and transmit the data to a base-station or gateway, via a wireless link at specific intervals. The signal link quality varies because the distance between the patient and the gateway is not fixed. This may lead to packet drops that increase the energy consumption due to repeated retransmission. The proposed novel transmission power control protocol combines a state based adaptive power control (SAPC) algorithm and an intelligent adaptive drop-off algorithm, to track the changes in the link quality, in order to maintain an acceptable Packet success rate (PSR)(~99%). This removes the limitation of the SAPC by making the drop-off rate adaptive. Simulations were conducted to emulate a subject’s movement in different physical scenarios—an indoor office environment and an outdoor running track. The simulation results were validated through experiments in which the transmitter, together with the sensor mounted on the subject, and the subject themselves were made to move freely within the communicable range. Results showed that the proposed protocol performs at par with the best performing SAPC corresponding to a fixed drop-off rate value.