Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item An investigation into non-destructive testing strategies and in-situ surface finish improvement for direct metal printing with SS 17-4 PH : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Albany, New Zealand(Massey University, 2022) Pereira, Tanisha MaryAdditive Manufacturing (AM) technologies have the potential to create complex geometric parts that can be used in high-end product industries, aerospace, automotive, medical etc. However, the surface finish, part-to-part reliability, and machine-to-machine reliability has made it difficult to qualify the process for load dependent structures. The improvement of surface finish on metal printed parts, is a widely sought solution by these high-end industries and non-destructively characterizing the mechanical aptitude of metal printed parts, would pave the way for quality assessment strategies used to certify additively manufactured parts. This thesis examines the capability of laser polishing and non-destructive testing technologies and methods to address these difficulties. This research study presents an investigation into quality management strategies for Direct Metal Printing (DMP) with powdered Stainless Steel 17-4 PH. The research aim is split into two key categories: to improve the surface finish of metal additive manufactured parts and to non-destructively characterize the impact of defects (metallurgical anomalies) on the mechanical properties of the printed part. To improve surface finish of a printed part, a novel methodology was tested to laser polish the Laser-Powder Bed Fusion (L-PBF) parts during print with the built-in laser. Numerous technologies for non-destructive testing techniques already exist, and in the duration of this doctoral study various technologies were explored. However, the final solution focuses on layer-wise capture with a versatile low-cost imaging system, retrofitted within the DMP machine, to capture each layer following the lasering process. In addition, the study also focuses on progressing the characterization of data (images), using a combination of image processing, 3D modelling and Finite-Element-Analysis to create a novel strategy for replicating the as-built specimen as a computer-aided design model and performing simulated fatigue failure analysis on the part. This thesis begins with a broadened justification of the research need for the solutions described, followed by a review of literature defining existing techniques and methods pertaining to the solutions, with validation of the research gap identified to provide novel contribution to the metal additive manufacturing space. This is followed by the methodologies developed, to firstly, control the laser parameters within the DMP and examine the influence of these parameters using surface profilometry, scanning electron microscopy and mechanical hardness testing. The control variables in this methodology combines laser parameters (laser power, scan speed and polishing iterations) and print orientation (polished surface angled at 0º, 20º, 40º, 60º, 80º and 90º degree increments from the laser), using several Taguchi designs of experiments and statistical analysis to characterize the experimental results. The second methodology describes the retrofitted imaging system, image processing techniques and analysis methods used to reconstruct the 3D model of a standard square shaped part and one with synthesized defects. The method explores various 2D to 3D extrusion-based techniques using a combination of code-based image processing (Python 3, OpenCV and MATLAB image processing toolbox) and ready-made software tools (Solidworks, InkTrace, ImageJ and more). Finally, the new research findings are presented, including the results of the laser polishing study demonstrating the successful improvement of surface finish. The discussion surrounding these results, highlights the most effective part orientation for laser polishing the outline of an AM part and the most effective laser parameter combination resulting in the most significant improvement to surface finish (roughness and profile height variation). Summarily, the best improvement in surface roughness was achieved with the <80 angled surface with the laser speed, laser power and polishing iterations set to 500mm/s, 30W, 3 respectively. The sample set total average measured a 16.7% decrease in Ra. NDT digital imaging, thermal imaging and acoustic technologies were considered for defect capture in metal AM parts. The solution presented is primarily focused on the expansion of research to process digital images of each part layer and examine strategies to move the research from a data capture stage to a data processing strategy with quantitative measurement (FEA analysis) of the printed part’s mechanical properties. In addition, the results discuss a method to create feedback to the DMP to selectively melt problematic areas, by re-creating the sliced part layers but removing the well-melted areas from the laser scanning pattern. The methods and technological solutions developed in this research study, have presented novel data to further research these methods in the pursuit of quality assurance for AM parts. The work done has paved the way for more the research opportunities and alternative methods to be explored that complement the methods detailed here. For example, using a combination of in-situ laser polishing, followed by post-processing the AM specimens in an acid-based chemical bath. Alternatively, further exploring acoustic NDT techniques to create an in-built acoustic-based imaging device within the AM machine. Finally, this thesis cross-examines the work done to answer the research questions established at the start of the thesis and verify the hypotheses stated in the methods chapter.Item The economic significance of the phytoextraction of nickel, cobalt and gold from metalliferous soils : a thesis in partial fulfilment of the requirements for the degree of Master of Science at Massey University(Massey University, 2000) Keeling, Scott MPhytoextraction of heavy metals is a relatively new technology that has potential applications for the remediation of many contaminated sites around the world. The technology has significant applications in the minerals industry for the treatment of low-grade ores and metalliferous mine waste. This study concerns the investigation of the potential to remove heavy metals, in particular nickel, cobalt and gold, from artificial and lateritic substrates. Four experiments comprise this study of the phytoextraction of nickel, cobalt and gold using both accumulator and non-accumulator species. Nickel and cobalt bioavailability was determined by ammonium acetate extraction for both artificial and laterite substrates. It was found that ammonium acetate extractability was predictive for nickel accumulation from a nickel-only artificial substrate. Cobalt bioavailability did not predict the accumulation response of either Alyssum bertolonii or Berkheya coddii grown of artificial substrates. The potential for phytoextraction of nickel and cobalt was investigated using the known nickel hyperaccumulators A. bertolonii and B. coddii, grown on artificially prepared substrates. The substrates were nickel-only (4 mg/kg to 1000 mg/kg), cobalt-only (4 mg/kg to 1000 mg/kg) and nickel-cobalt mixed (1:1 ratio, 4 mg/kg to 500 mg/kg) amendments of sulphates to commercial potting mix. Hyperaccumulation from nickel-only and cobalt-only substrates resulted in typical logarithmic metal uptake by both species. The cobalt-only substrates were phytotoxic to B. coddii above a concentration of 15-20 mg/kg. Phytotoxicity significantly reduced biomass production in B. coddii without effecting the bioaccumulation coefficient. No corresponding cobalt phytotoxicity was observed in A. bertolonii over the experimental range, although biomass production appears to favour substrate concentrations below 30 mg/kg. The bioavailability and hyperaccumulation of cobalt from the mixed nickel-cobalt substrates dramatically reduced the nickel accumulation potential of both species at substrate concentrations below 300 mg/kg. At higher substrate metal concentrations both species return to nickel dominant hyperaccumulation. Induced gold accumulation in B. coddii and Iberis intermedia was investigated using, sequential ammonium thiocyanate and ammonium thiosulphate chelation to, a 5 mg/kg gold artificial substrate. An attempt to determine gold bioavailability by ammonium thiocyanate and ammonium thiosulphate extraction was made on the substrate. It was found that neither chelator extraction could be correlated with plant accumulation induced by the same concentration of the reagent. Ammonium thiocyanate induction resulted in plant gold accumulation at or below the substrate concentration. Ammonium thiosulphate induced gold accumulation in I. Intermedia reached 48.8 mg/kg when treatment with a 1% solution. B. coddii accumulated 9.3 mg/kg gold for the same treatment. Five consignments of metalliferous lateritic materials from Western Australia were investigated. Three substrates originated from Project Murrin Murrin nickel and cobalt mine operated by Anaconda Nickel Ltd. and two substrates originated from Boddington Gold Mine operated by Worsley Alumina Ltd. Nickel and cobalt accumulation by A. bertolonii and B. coddii was found to be significantly lower than observed using artificial substrates. Nickel and cobalt bioavailability, determined by ammonium acetate extraction, failed to predict the accumulation responses from laterite substrates. This is attributed to elemental interference by, and possibly ammonium acetate chelation of, other mobile heavy metals in these substrates. A hypothesis deserved of further research. Hyperaccumulation of nickel was observed for both species on the Anaconda Nickel Ltd. SAP substrate only. Appreciable cobalt accumulation (≈90 mg/kg) was observed on the SAP substrate for both species and on the Boddington Gold Mine B5 substrate for B. coddii. Phytomining scenarios were determined for both species grown on the SAP substrate. A. bertolonii could produce 13 kg of nickel and 0.8 kg of cobalt per hectare with a value of US$ 163. B. coddii could produce 23.8 kg of nickel and 2.1 kg of cobalt per hectare at a value of US$ 319. These levels of production could be improved by fertilisation and/or substrate acidification. A preliminary investigation into induced gold accumulation from laterite substrates by I. Intermedia, A. longiflora, Brassica juncea and Limum usitatissimum was made using the acid biased chelator ammonium thiocyanate. It was found that an acidified amendment of ammonium thiocyanate greatly improved the phytoaccumulation of gold from the lateritic substrates. An amendment of 2M HC1 produced appreciable gold mobility and phytoaccumulation and indicates that gold solubility is the primary control on plant uptake. Analysis of various plant tissues indicated that Acacia longiflora stored significant gold in its roots compared to foliar components. All plant-substrate combinations indicated a trend towards increasing acidification and gold phytoaccumulation. No plant-substrate-treatment combination produced an economically viable phytomining scenario.
