Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item RGB-D and Thermal Sensor Fusion: A Systematic Literature Review(IEEE, 2023-08-09) Brenner M; Reyes NH; Susnjak T; Barczak ALCIn the last decade, the computer vision field has seen significant progress in multimodal data fusion and learning, where multiple sensors, including depth, infrared, and visual, are used to capture the environment across diverse spectral ranges. Despite these advancements, there has been no systematic and comprehensive evaluation of fusing RGB-D and thermal modalities to date. While autonomous driving using LiDAR, radar, RGB, and other sensors has garnered substantial research interest, along with the fusion of RGB and depth modalities, the integration of thermal cameras and, specifically, the fusion of RGB-D and thermal data, has received comparatively less attention. This might be partly due to the limited number of publicly available datasets for such applications. This paper provides a comprehensive review of both, state-of-the-art and traditional methods used in fusing RGB-D and thermal camera data for various applications, such as site inspection, human tracking, fault detection, and others. The reviewed literature has been categorised into technical areas, such as 3D reconstruction, segmentation, object detection, available datasets, and other related topics. Following a brief introduction and an overview of the methodology, the study delves into calibration and registration techniques, then examines thermal visualisation and 3D reconstruction, before discussing the application of classic feature-based techniques and modern deep learning approaches. The paper concludes with a discourse on current limitations and potential future research directions. It is hoped that this survey will serve as a valuable reference for researchers looking to familiarise themselves with the latest advancements and contribute to the RGB-DT research field.Item Analysis of Depth Cameras for Proximal Sensing of Grapes(MDPI (Basel, Switzerland), 2022-06) Parr B; Legg M; Alam FThis work investigates the performance of five depth cameras in relation to their potential for grape yield estimation. The technologies used by these cameras include structured light (Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure), and LiDAR (Intel L515). To evaluate their suitability for grape yield estimation, a range of factors were investigated including their performance in and out of direct sunlight, their ability to accurately measure the shape of the grapes, and their potential to facilitate counting and sizing of individual berries. The depth cameras’ performance was benchmarked using high-resolution photogrammetry scans. All the cameras except the Kinect V1 were able to operate in direct sunlight. Indoors, the RealSense D415 camera provided the most accurate depth scans of grape bunches, with a 2 mm average depth error relative to photogrammetric scans. However, its performance was reduced in direct sunlight. The time of flight and LiDAR cameras provided depth scans of grapes that had about an 8 mm depth bias. Furthermore, the individual berries manifested in the scans as pointed shape distortions. This led to an underestimation of berry sizes when applying the RANSAC sphere fitting but may help with the detection of individual berries with more advanced algorithms. Applying an opaque coating to the surface of the grapes reduced the observed distance bias and shape distortion. This indicated that these are likely caused by the cameras’ transmitted light experiencing diffused scattering within the grapes. More work is needed to investigate if this distortion can be used for enhanced measurement of grape properties such as ripeness and berry size.

