Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
5 results
Search Results
Item Nitrogen and phosphorus leaching losses under cropping and zone-specific variable-rate irrigation(CSIRO Publishing, 2023-12-19) Drewry JJ; Hedley CB; McNeill SJ; El-Naggar AG; Karakkattu KK; Horne DJ; Dickinson NContext. Agricultural land use is intensifying globally. Irrigation and other farm practices associated with intensification, such as cultivation, grazing, and fertiliser application, can increase nutrient losses. Variable rate irrigation (VRI) systems manage irrigation to spatially variable soils and different crops (zones). We lack knowledge on nutrient losses under zone-specific irrigation for mixed-cropping systems (combined crop and livestock grazing). Aims. This study evaluated drainage, nitrogen, and phosphorus leaching losses under zone-specific irrigation for a temperate mixed-cropping system. Methods. The study site had sheep grazing and crops including peas, beans, wheat, turnips, plantain, and ryegrass-white clover pasture. It had a variable-rate centre-pivot irrigator for two soil zones (free draining Zone 1; poorly drained Zone 2). Drainage flux meters (DFMs) collected drainage leachate, and samples for measurement of nitrogen (N) and phosphorus (P) concentrations. Soil water balance data and statistical modelling evaluated nutrient leaching losses over 5 years. Key results. The mean leaching load of NOx-N (nitrate + nitrite) across 5 years was 133 (s.d. 77) and 121 (s.d. 97) kg N/ha/year for Zone 1 and Zone 2, respectively. Similarly, the mean leaching load of reactive P across all years was 0.17 (s.d. 0.30) and 0.14 (s.d. 0.14) kg P/ha/year for Zone 1 and Zone 2, respectively. The nitrogen concentrations and loads generally had greater uncertainty in Zone 2. Conclusions. The DFMs worked well for the free draining sandy soil. However, fewer samples were collected in the silt soil, requiring the statistical modelling developed in this study. This study gave a reasonable estimate of annual leaching load means, but the indicators of their within-year variation were not reliable, partly due to differences in sampling frequency. With some exceptions, there was generally more NOx-N leaching from the free draining Zone 1. VRI provided a system to control irrigation-related drainage and leaching in these soil zones. Implications. Drainage flux meters are more reliable in well-drained than in poorly drained soil. Given the lack of published studies, this study has improved knowledge of nutrient losses under zone-specific irrigated mixed-cropping systems in a temperate climate.Item Evaluating woodchip bioreactors for mitigating drainage nitrate levels from a municipal wastewater land treatment site : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences at Massey University, Palmerston North, New Zealand(Massey University, 2024-09-23) Romero Ramírez, Stefanía YaninaWoodchips bioreactors are a well-established end-of-drain treatment technology that has been widely used to reduce nitrate (NO₃-) from agricultural drainage water. However, their application to municipal wastewater land treatment sites remains less explored, despite potential advantages. In New Zealand, land application of pre-treated wastewater is a growing practice to mitigate excessive nutrient discharges to the aquatic environment. Land treatment can prove effective when operated correctly, but challenges arise when large volumes of wastewater, and small areas available for irrigation, necessitate high application rates, which can result in NO₃- enrichment of drainage water. The Levin Wastewater Land Treatment Site (LWLTS) is an example of where relatively high annual volumes of municipal wastewater are irrigated over an under-sized application area, resulting in high application depths (4667 mm/year). Consequently, surface drains and shallow groundwater transfer NO₃- to the Waiwiri Stream continually all year. In order to reduce the impact of the LWLTS on the water quality of the Waiwiri Stream, one of its resource consent requirements involves reducing the NO₃- levels in the Waiwiri Stream, downstream from the site. The objective of this thesis was to evaluate the potential use of woodchip bioreactors for reducing NO₃- concentrations in drainage water from LWLTS, including an assessment of the ability of soluble C dosing to enhance NO₃- removal. Initial experiments used small-scale column woodchips bioreactors, which simulated similar water temperatures and NO₃- concentrations to those at the LWLTS. The effect of different water hydraulic retention times (HRT) and the use of dosing with two soluble C sources, liquid sugar, and ethanol, were assessed. Under warm temperature conditions, the column bioreactors achieved 99% NO₃- removal efficiency with a 10-hour HRT. In contrast, under cool water temperatures at the same HRT, the NO₃- removal efficiency decreased to 31%. Soluble C dosing was an effective strategy for enhancing NO₃- removal, with the choice of C source proving to be crucial. Ethanol demonstrated to be more efficient than liquid sugar. Additionally, it was determined that dosing with ethanol at a C:N dosing rate of 1.5:1 achieved high removal efficiencies of 77% under warm conditions and at a 3.3-hour HRT, and 82% under cool conditions and at a 10-hour HRT. Based on the results of the column bioreactor study, the performance of pilot-scale woodchip bioreactors at reducing NO₃- levels in drainage water were evaluated at the LWLTS under field conditions. These experiments involved quantifying the effects of different HRTs and dosing with ethanol at different C:N ratios. Operating the bioreactors, at a 10-hour HRT achieved average NO₃- removal efficiencies of 43% and 59% during the cool and warm seasons, respectively. While, at a 20-hour HRT, the removal efficiencies were 69% and 85%, respectively. The variations in NO₃- removal efficiency between both seasons demonstrated that during the cool season the bioreactors were on average about one-third less effective. When bioreactors, operating at 6.6-hour HRT in cool conditions, were dosed with ethanol at a C:N ratio of 0.75:1, the NO₃- removal efficiency improved from 24% to 93%. This result demonstrates that under field conditions ethanol dosing proved to be a higher effective strategy for enhancing the performance of woodchip bioreactors, particularly during cool periods. Based on the findings of the pilot-scale bioreactors, two woodchip bioreactor designs were proposed for the LWLTS: a non-dosed woodchip bioreactor of 645 m³ operating at a long HRT (20 hours), and an ethanol-dosed woodchip bioreactor of 197 m³ operating at a short HRT (6.6 hours). The two proposed designs provide contrasting approaches, although both are expected to achieve the same annual NO₃- load removal (1174 kg N/year) and have similar annualised NO₃- removal costs ($6.90 and $6.50/kg N, respectively). In the long term, it is expected that the NO₃- removal of the larger non-dosed bioreactor will decline at a faster rate compared to the ethanol-dosed bioreactor due to relying solely of woodchips as the C source. However, it would be less susceptible to the risk of bioclogging and has greater capacity to increase NO₃- removal. In addition, ethanol dosing could be introduced to the larger non-dosed bioreactor in the future, when a decline in NO₃- removal efficiency is observed. Therefore, the overall flexibility of the larger bioreactor design is an advantage but comes with higher initial set-up cost. The results of this research demonstrate that woodchips bioreactors are effective treatment methods for mitigating drain water NO₃- levels at a municipal wastewater land application site. Additionally, C dosing using ethanol proved to be a promising cost-effective alternative to enhance bioreactor performance, allowing the use of relatively short HRTs, especially during cool conditions. This increases the daily volume of water that can be effectively treated.Item The effect of different doses of nitrate from beetroot juice on exercise performance and cognitive function in healthy female and male recreational exercisers : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Nutrition and Dietetics at Massey University, Auckland, New Zealand. EMBARGOED until 29th January 2026.(Massey University, 2024) Harrison, BriannaThe effect of different doses of nitrate from beetroot juice on exercise performance and cognitive function in healthy female and male recreational exercisers. Dietary nitrate supplementation has been shown to improve endurance exercise following acute and long-term supplementation periods as the bioactive form of nitrate, nitric oxide, works within the body to create greater blood flow and therefore oxygen delivery to working muscles through enhanced vasodilation. Limited studies have researched the effects of long-term nitrate supplementation through beetroot juice with female and male recreational athletes. This study investigated if intake of varying doses of dietary nitrate from beetroot juice affect cognitive and exercise performance in recreational female and male athletes due to their reduced cardiovascular systems following a 7-day supplementation period.--Shortened abstractItem Thin film electrochemical sensor for water quality monitoring : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand(Massey University, 2023-12-11) Lal, KartikayFreshwater is the most precious natural resource, essential for supporting life. Aquatic ecosystems flourish in freshwater sources, and many regions around the world depend on aquatic food sources, such as fish. Nitrogen and phosphorous are the two nutrients, in particular, that are essential for growth of aquatic plants and algae. However, with rising population and anthropogenic activities, excessive amounts of such nutrients enter our waterways through various natural processes, thereby degrading the quality of freshwater sources. Elevated levels of nitrate-nitrogen content, in particular, lead to consequences for both aquatic life as well as human health, which has been a cause for concern for many decades. As recommended by the World Health Organization, the maximum permissible nitrate level in water is 11.3 mg/L. These levels are often exceeded in coastal areas or freshwater bodies that are close to agricultural land. Therefore, it is essential to monitor nitrate levels in freshwater sources in real-time, which can be achieved by employing detection methods commonly used to detect ionic content in water. Hence, a comprehensive review was carried out on various field-deployable electrochemical and optical detection methods that could be employed for in-situ detection of nitrate ions in water. The primary focus was on electrochemical methods that could be integrated with low-cost planar electrodes to achieve targeted detection of nitrate ions in water. Designing resilient sensors for real-time monitoring of water quality is a challenging task due to the harsh environment to which they are subjected. There is a significant need for sensors with attributes such as repeatability, sensitivity, low-cost, and selectivity. These attributes were first explored by evaluating the performance of silver and copper materials on three distinct geometric patterns of electrodes. The experiments produced promising results with interdigitated pattern of copper electrodes that were successful in detecting 0.1-0.5 mg/L of nitrate ions in deionised water. The interdigitated geometric pattern of electrodes were further analyzed in four distinct materials namely, silver, gold, copper, and tin with real-world freshwater samples that were collected from three different freshwater bodies. The water samples were used to synthesize varying concentrations of nitrate ions. The results showed tin electrodes performed better over other materials for nitrate concentrations from 0.1-1 mg/L in complex matrix of real-world sample. The nitrate sensor eventually needs to be deployed in freshwater bodies, hence a real-time water quality monitoring system was also built that incorporated sensors to monitor five basic water quality parameters with the aim to monitor and study the quality of water around the local area.Item Assessment of biogeochemical transformation of nitrate in shallow groundwater in the agricultural landscape : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Soil Science at Massey University, Manawatu, New Zealand(Massey University, 2019) Gonzalez Moreno, Marcela AngelicaIn groundwaters, denitrification or subsurface denitrification (SD) has been identified as a key attenuation process. Where leached nitrate (NO₃⁻) can be reduced to dinitrogen (N₂ — a harmless gas), offering an ecosystem service in terms of reducing water pollution. However, partial denitrification (PD) can release nitrous oxide (N₂ — a greenhouse gas), resulting in a pollution swap from liquid to gaseous pollution and adding to greenhouse gas emission. There is very limited information available about occurrence, characteristics and dynamics of subsurface denitrification in shallow groundwaters across New Zealand agricultural catchments. We studied 6 pastoral farms (DF 1, 2, 3; SC 1, 2, 3; ARM 1, 2, 3; CAM 1, 3; SR 1, 2, 3; BUR 1, 2 and 3) located in various hydrogeological settings in the Manawatu and Rangitikei Rivers catchments, in the lower North Island of New Zealand. We collected 7 sets of monthly groundwater observations at 17 piezometers from March to September 2018 to characterize the groundwater monthly chemical variations. The collected groundwater samples were analyzed for groundwater redox status, including dissolved oxygen (DO), oxidation-reduction potential, pH, NO₃⁻-N, iron (Fe²⁺), manganese (Mn²⁺) and sulphate (SO₄²⁻). We also conducted a set of push-and-pull tests to gain insights into dynamics of subsurface denitrification occurring in the groundwater samples at the study sites. We quantified changes in concentration of NO₃⁻-N, Br⁻ (tracer), dissolved N₂O-N and excess N₂ during the push-and-pull tests. Our results suggested a spatially variable groundwater redox conditions and SD occurring across the study sites. The piezometers DF 2, 3; SC 1, 2; CAM 3; ARM 1, 2 and 3 showed anoxic redox status. Only the piezometers SC 3 and CAM 1 presented mixed redox condition. While the piezometers DF 1; SR 1, 2, 3; BUR 1, 2 and 3 indicated oxic conditions with some variability over the study. Nitrate is being reduced in the anoxic piezometers DF 2, 3; SC 1, 3; ARM 1, 2, 3 and CAM 3, showing no NO₃⁻-N accumulation (< 0.5 mg L⁻¹). One of the piezometers with mixed redox condition (CAM 1) showed NO₃⁻-N accumulation (> 6 mg L⁻¹) while the piezometer SC 3 showed variability in NO₃⁻-N accumulation ranging from 0.02 mg L⁻¹ to 22.56 mg L⁻¹. The oxic piezometers SR 1, 2, 3; BUR 1, 2 and 3 showed NO₃⁻-N accumulation (> 3 mg L⁻¹) except for piezometer DF 1 that showed variability in NO₃⁻-N concentrations ranging from 0.01 mg L⁻¹ to 3.75 mg L⁻¹ over the study. The concentrations of the electron donors Fe²⁺ and Mn²⁺ were found to be suitable for SD on anoxic piezometers DF 2, 3; SC 1, 2; CAM 3 and ARM 1, 2, 3 (> 1 mg L⁻¹ and > 0.05 mg L⁻¹ respectively). The piezometers with mixed redox status SC 3 and CAM 1 ranged just over the redox threshold for identifying redox processes (0.1 – 1.0 mg L⁻¹ and > 0.05 mg L⁻¹ respectively). In general, the piezometer with oxic redox status (DF 1, SR 1, 2, 3 and BUR 1, 2, 3) showed [Fe²⁺] and [Mn²⁺] below the threshold for identifying redox processes (< 0.1 mg L⁻¹ and < 0.05 mg L⁻¹ respectively) and not suitable to support SD. The dominant terminal product of SD, whether was complete denitrification (N₂ — as end product) or partial SD (N₂O — as end product) spatially varied according to the redox status of the groundwater. Push-pull test results showed an increase in excess N₂ and N₂O-N concentrations at DF 3, ARM 3, CAM 3, BUR 3. The push-pull test conducted at SR 3 and SC 3 showed inconclusive results. Piezometers CAM 3 and ARM 3 showed the highest suitable conditions for SD followed by DF 3. Piezometer BUR 3 showed the highest partial SD rate. Therefore BUR 3 is considered in general, the less suitable piezometer for SD. Our observations highlight the influence of different hydrogeological settings on spatial variability of partial (pollution swamp) or complete (ecosystem service) SD in shallow groundwaters. A better understanding and quantification of spatial and temporal variability of SD process will support information, design and formulation of targeted and effective management measures for sustainable agricultural production while protecting soil, water and air quality.

