Thin film electrochemical sensor for water quality monitoring : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

Loading...
Thumbnail Image
Date
2023-12-11
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
Freshwater is the most precious natural resource, essential for supporting life. Aquatic ecosystems flourish in freshwater sources, and many regions around the world depend on aquatic food sources, such as fish. Nitrogen and phosphorous are the two nutrients, in particular, that are essential for growth of aquatic plants and algae. However, with rising population and anthropogenic activities, excessive amounts of such nutrients enter our waterways through various natural processes, thereby degrading the quality of freshwater sources. Elevated levels of nitrate-nitrogen content, in particular, lead to consequences for both aquatic life as well as human health, which has been a cause for concern for many decades. As recommended by the World Health Organization, the maximum permissible nitrate level in water is 11.3 mg/L. These levels are often exceeded in coastal areas or freshwater bodies that are close to agricultural land. Therefore, it is essential to monitor nitrate levels in freshwater sources in real-time, which can be achieved by employing detection methods commonly used to detect ionic content in water. Hence, a comprehensive review was carried out on various field-deployable electrochemical and optical detection methods that could be employed for in-situ detection of nitrate ions in water. The primary focus was on electrochemical methods that could be integrated with low-cost planar electrodes to achieve targeted detection of nitrate ions in water. Designing resilient sensors for real-time monitoring of water quality is a challenging task due to the harsh environment to which they are subjected. There is a significant need for sensors with attributes such as repeatability, sensitivity, low-cost, and selectivity. These attributes were first explored by evaluating the performance of silver and copper materials on three distinct geometric patterns of electrodes. The experiments produced promising results with interdigitated pattern of copper electrodes that were successful in detecting 0.1-0.5 mg/L of nitrate ions in deionised water. The interdigitated geometric pattern of electrodes were further analyzed in four distinct materials namely, silver, gold, copper, and tin with real-world freshwater samples that were collected from three different freshwater bodies. The water samples were used to synthesize varying concentrations of nitrate ions. The results showed tin electrodes performed better over other materials for nitrate concentrations from 0.1-1 mg/L in complex matrix of real-world sample. The nitrate sensor eventually needs to be deployed in freshwater bodies, hence a real-time water quality monitoring system was also built that incorporated sensors to monitor five basic water quality parameters with the aim to monitor and study the quality of water around the local area.
Description
Keywords
Water quality, Measurement, Water, Analysis, Technological innovations, Electrochemical sensors, Nitrates, Environmental aspects, thin-film, electrochemical, nitrate, sensor
Citation