Institute of Natural and Mathematical Sciences

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/4224

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Mixing multi-core CPUs and GPUs for scientific simulation software
    (Massey University, 2010) Hawick, K.A.; Leist, A.; Playne, D.P.
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers.
  • Item
    A novel bootstrapping method for positive datasets in cascades of boosted ensembles
    (Massey University, 2010) Susnjak, T.; Barczak, A.L.C.; Hawick, K.A.
    We present a novel method for efficiently training a face detector using large positive datasets in a cascade of boosted ensembles. We extend the successful Viola-Jones [1] framework which achieved low false acceptance rates through bootstrapping negative samples with the capability to also bootstrap large positive datasets thereby capturing more in-class variation of the target object. We achieve this form of bootstrapping by way of an additional embedded cascade within each layer and term the new structure as the Bootstrapped Dual-Cascaded (BDC) framework. We demonstrate its ability to easily and efficiently train a classifier on large and complex face datasets which exhibit acute in-class variation.
  • Item
    Small-world networks, distributed hash tables and the e-resource discovery problem
    (Massey University, 2010) Leist, A.; Hawick, K.A.
    Resource discovery is one of the most important underpinning problems behind producing a scalable, robust and efficient global infrastructure for e-Science. A number of approaches to the resource discovery and management problem have been made in various computational grid environments and prototypes over the last decade. Computational resources and services in modern grid and cloud environments can be modelled as an overlay network superposed on the physical network structure of the Internet and World Wide Web. We discuss some of the main approaches to resource discovery in the context of the general properties of such an overlay network. We present some performance data and predicted properties based on algorithmic approaches such as distributed hash table resource discovery and management. We describe a prototype system and use its model to explore some of the known key graph aspects of the global resource overlay network - including small-world and scale-free properties.