• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biofilm formation of Enterobacter sakazakii on three different materials of infant feeding tube : a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Microbiology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02whole.pdf (1.642Mb)
    01front.pdf (329.9Kb)
    Export to EndNote
    Abstract
    The aim of this study was to observe biofilm formation by Enterobacter sakazakii (E. Sakazakii) from different clinical, dairy and environmental origins on three infant feeding tubes made of different materials. Infant formula milk was selected as the medium for E. sakazakii growth. Seventeen isolates from different origins were retrieved and tested for purity, using a plating method and biochemical tests to eliminate the non E. sakazakii strains from this study. A method to rapidly and accurately detect viable cells of E. sakazakii on infant feeding tube surfaces using of the BacTrac® 4000 microbiological growth analyser was developed. The sources of errors such as from cleaning, operation and handling procedures were assessed prior to experimental runs. The strength of biofilm formation by different isolates of E. sakazakii on plastic surfaces was scrutinised using a microtiter plate assay. The results from the microtitre plate assay were based on the absorbance at 550 nm of crystal violet stained films and showed that all the clinical isolates were able to attach and form strong biofilms on the plate. Some environmental isolates formed strong or weak biofilms and some did not produce biofilm at all. However, dairy isolates formed both strong and weak biofilms in the microtitre plate when incubated in 10% reconstituted infant formula milk. The further studies were to quantify biofilm formation by three isolates of different origin on three different materials of infant feeding tubes using a batch system. Tubing pieces were incubated with infant formula milk inoculated with E. sakazakii cells at approximately 8 log CFU mL-1 and the biofilm formation was assessed at three time intervals: 4, 12 and 24 hours. Biofilm formation on the tubing by clinical isolates was also observed using epifluorescence microscopy and the scanning electron microscope. E. sakazakii from clinical, dairy and environmental isolates were able to form biofilm on three different materials of infant feeding tubes. The results showed that the initial attachment at 4 h on silicone tubing was low compared with the other two tubes. The scanning electron micrographs showed the surface characteristics of each tubing and the biofilm formation by E. sakazakii clinical isolates after 4, 12 and 24 hours. Silicone tubing appeared to be the best choice for premature babies that need feeding using feeding tubes, as it was slow to become colonised compared with the PVC and polyurethane tubing.
    Date
    2009
    Author
    Md Zain, Siti Norbaizura Binti
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1012
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1