• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The binding of glycosaminoglycans to peptides : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (2.301Mb)
    02_whole.pdf (35.37Mb)
    Export to EndNote
    Abstract
    The overall aim this study was to examine the possibility of using immobilised polypeptide chains to fractionate/separate Glycosaminoglycans (GAG's) from mixtures. Initially individual samples of three GAG classes (chondroitin sulphate, dermatan sulphate and heparin) were characterised to establish purity and provide basic information. Once these samples had been characterised the samples were treated as standards. Three short poly-l-lysine (PLL) chains with defined length and orientation were synthesized. As a control a PLL chain with 633 residues was immobilised. The interaction of the GAG standards with these resins did not replicate published solution binding behaviour of longer PLL chains. This suggested a different mode of binding. The interaction of two lengths of PLL (126 and 633 residues) and the K8G peptide with the GAG standards in solution was investigated. These studies demonstrated that the mode of binding of GAG's to short PLL chains was radically different to the earlier reported solution binding studies. β-Strand dominates with the short PLL chains instead of α-helix established in the published solution binding studies. The interaction of two peptides PCI (264-283) and thrombospondin peptide with the GAG standards was studied using circular dichroism spectroscopy. In the case of the PCI peptide, each GAG induced different secondary structures. Chondroitin sulphate and heparin induced an α-helix, whereas dermatan sulphate gave β-strands. Heparin and dermatan sulphate induced double the amount of secondary structure compared to chondroitin sulphate. The strength of the interaction of GAG's with the peptide was also measured by the concentration of salt required to dissociate 50% of the complex. The figures for dermatan sulphate and heparin were found to be 0.1 and 0.3 M salt respectively. The binding of the GAG standards to the thrombospondin peptide did not elicit any detectable change in conformation of the peptide. Critical examination of published material on the interaction of GAG's (principally heparin) with short peptides, prompted the writer to propose two new complementary models. The first model examines binding in terms of the conformation of the peptide induced by binding to the GAG. It is composed of three components, the periodicity of polar and nonpolar residues within the peptide sequence, the spacing of pairs of basic residues and the spacing of pairs of acidic and basic residues. This model is successfully able to rationalise the binding behaviour of a number of GAG/peptide interactions in terms of the dominant secondary structure and the biological activity. The model is able to make a number of specific predictions. The second model examines the strength of the interaction between heparin and peptides containing the proposed consensus sequences for GAG binding sites. A significant correlation between the binding strength and an attribute derived from the sequence of the peptide was found using only one assumption. The assumption was that the peptides in the correlation bound to heparin with significant levels of β-strand. For the first time it is possible to rationalise the behaviour of GAG/peptide interactions in a coherent manner. The design of peptides that are capable of binding to specific GAG's now seems possible.
    Date
    1994
    Author
    Taylor, Grant John
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/10529
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1