JavaScript is disabled for your browser. Some features of this site may not work without it.
Multiple configuration shell-core structured robotic manipulator with interchangeable mechatronic joints : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University, Turitea Campus, Palmerston North, New Zealand
With the increase of robotic technology utilised throughout industry, the need for skilled
labour in this area has increased also. As a result, education dealing with robotics has
grown at both the high-school and tertiary educational level. Despite the range of
pedagogical robots currently on the market, there seems to be a low variety of these
systems specifically related to the types of robotic manipulator arms popular for industrial
applications. Furthermore, a fixed-arm system is limited to only serve as an educational
supplement for that specific configuration and therefore cannot demonstrate more than
one of the numerous industrial-type robotic arms.
The Shell-Core structured robotic manipulator concept has been proposed to improve the
quality and variety of available pedagogical robotic arm systems on the market. This is
achieved by the reconfigurable nature of the concept, which incorporates shell and core
structural units to make the construction of at least 5 mainstream industrial arms
possible. The platform will be suitable, but not limited to use within the educational
robotics industry at high-school and higher educational levels and may appeal to
hobbyists.
Later dubbed SMILE (Smart Manipulator with Interchangeable Links and Effectors), the
system utilises core units to provide either rotational or linear actuation in a single plane.
A variety of shell units are then implemented as the body of the robotic arm, serving as
appropriate offsets to achieve the required configuration. A prototype consisting of a
limited number of ‘building blocks’ was developed for proof-of-concept, found capable of
achieving several of the proposed configurations.
The outcome of this research is encouraging, with a Massey patent search confirming the
unique features of the proposed concept. The prototype system is an economic, easy to
implement, plug and play, and multiple-configuration robotic manipulator, suitable for
various applications.