• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A high frequency change, which is both inducible and reversible, results in altered colony morphology of a fungal symbiont (Neotyphodium lolii) and dwarfing of its grass host (Lolium perenne) : this thesis is presented in partial fulfilment of the requirements for the degree of Master of Science (MSc) in Microbiology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (2.669Mb)
    01_front.pdf (48.70Kb)
    Export to EndNote
    Abstract
    Fungal endophytes of the genus Neotyphodium form stable symbiotic associations, with grasses, that are symptomless and generally considered to be mutualistic. The benefits that these fungi confer to their grass hosts are exploited in pastoral agriculture systems. The production of a range of secondary metabolites, specifically alkaloids including peramine and ergovaline can give their host plants an ecological advantage in certain environments. Neotyphodium endophytes are asexual and have lost the ability to transfer horizontally between hosts making seed transmission a vital feature of the association. This thesis reports the occurrence of phenotypically different perennial ryegrass plants (Lolium perenne) in a population infected with Neotyphodium lolii. Here we show that the change in the plants is directly attributable to a variant endophyte that they host. Isolation of the variant endophyte reveals a change in colony growth compared to the wild-type resident endophyte in the population, which has a white and cottony phenotype. Colonies of the variant endophyte are smaller than wild-type colonies and mucoid, with hyphal filaments forming aggregates. Evidence shows that the switch between colony morphologies occurs at a very high frequency, is reversible, and appears to be environmentally induced. This suggests that the switching phenomenon involves gene regulation rather than mutation. When endophyte-free plants are infected, with either white and cottony (wild-type) or mucoid (variant) fungal colonies, they assume a morphology consistent with the state of the fungus at the time of inoculation, that is normal or dwarfed, respectively. In addition, re-isolation of endophyte from either normal or dwarfed plants always yields white and cottony or mucoid colonies, respectively, suggesting that the host environment stabilizes the state of the fungus. Proteomic profiling revealed differences in protein expression between plants infected with either the wild-type or mucoid fungus. Furthermore, host plants containing the mucoid fungus have never flowered or produced seed. Thus, if this change in the fungal symbiont occurs in a competitive natural environment the mucoid fungus and its host plant may not persist beyond the first generation. This thesis provides insights into the plastic nature of fungal endophyte/grass symbiota and discusses possible mechanisms for the observed morphological switching in culture and host dwarfing.
    Date
    2009
    Author
    Simpson, Wayne Roydon
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1139
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1