• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The age-structured population models : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Mathematics at Massey University

    Icon
    View/Open Full Text
    01_front.pdf (1.708Mb)
    02_whole.pdf (13.73Mb)
    Export to EndNote
    Abstract
    Mathematical theories of population dynamics have been derived and have been effectively used in the last two hundred years. These theories have appeared both implicitly and explicitly in many important studies of populations: human populations, as well as populations of animals, cells and viruses. The aim of this thesis is to understand how these models have developed with a view to an improved formulation. Nowadays, the structured model can be considered to be of great importance and use. Mathematicians have realised that in real biological and ecological situations, a model should be developed which is at least structured on age especially with higher order animals, for example human and possum populations, so in this thesis we pay much attention to these type of population models. We shall also be discussing the qualitative nature of the solutions to the model: such as the long-term behaviour, steady-age distribution and the stability of the solution in great details. In chapter 1, we begin with the historical background of the unstructured population in which the properties of individuals are ignored and only the total population is considered. The Malthusian and Verhulst model are set as examples. We then proceed in chapter 2 with the simplest McKendrick's age- structured population model. In chapter 3, we shall show how Laplace transform can be used to solved the problem. We have also chosen some arbitrary functions for either one or both the birth and/or death rate, so that we can make deductions from the assumption of these special cases. Chapter 4, discusses the long-term behaviour: steady age distribution (s.a.d.) and the stability of the solution being analysed. We then generalise the linear age- dependent population model in chapter 5 to a non-linear age-dependent model where the limiting effects (overcrowding and limitation of resources) has an effect, on the specific age class only. Chapter 6 discusses the more realistic non-linear model similar to that described in chapter 5 but here the limiting effects have an effect on the whole population. Finally, we realise that since these models need to be tested, we shall, in chapter 7 test our model with possum populations on data collected from the Orongorongo Valley in Wellington. And then make suggestions for future work in Chapter 8.
    Date
    1995
    Author
    Hamzah, Norhayati
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/11550
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1