• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evolutionary and molecular origins of a phenotypic switch in Pseudomonas fluorescens SBW25 : a thesis submitted in partial fulfilment of the requirements for the degree of Ph.D. in Evolutionary Genetics at Massey University, Auckland, New Zealand

    Icon
    View/Open Full Text
    02whole.pdf (4.491Mb)
    01front.pdf (193.7Kb)
    Export to EndNote
    Abstract
    Survival in the face of unpredictable environments is a challenge faced by all organisms. One solution is the evolution of mechanisms that cause stochastic switching between phenotypic states. Despite the wide range of switching strategies found in nature, their evolutionary origins and adaptive significance remain poorly understood. Recently in the Rainey laboratory, a long-term evolution experiment performed with populations of the bacterium Pseudomonas fluorescens SBW25 saw the de novo evolution of a phenotypic switching strategy. This provided an unprecedented opportunity to gain insight into the evolution and maintenance of switching strategies. The derived ‘switcher’ genotype was detected through colony level phenotypic dimorphism. Further microscopic examination revealed the cellular basis of phenotypic switching as the bistable (ON/OFF) expression of a capsule. Transposon mutagenesis demonstrated that the structural basis of the capsule was a colanic acid-like polymer encoded by the Pflu3656-wzb locus. Subsequently, whole genome re-sequencing enabled elucidation of the series of mutational events underlying the evolution of capsule bistability: nine mutations were identified in the switcher. Present in both forms of the switcher, the final mutation – a point mutation in a central metabolic pathway – was shown to be the sole mechanistic cause of capsule switching; it ‘set the stage’ for a series of molecular events directly responsible for bistability. Two models were proposed to explain capsule switching at the molecular level: the genetic amplification-reduction model, and the epigenetic feedback model. Collective results of biochemical and genetic assays proved consistent with the epigenetic model, whereby a decrease in flux through the pyrimidine biosynthetic pathway activates an already-present feedback loop. Subsequent analysis of a second switcher (evolved independently of and in parallel with the first) revealed a radically different genetic route leading to phenotypically and mechanistically similar capsule switching. In addition to providing the first empirical insight into the evolutionary bases of switching strategies, the work presented in this thesis demonstrates the power of natural selection – operating on even the simplest of organisms – to forge adaptive solutions to evolutionary challenges; in a single evolutionary step, selection took advantage of inherent intracellular stochasticity to generate an extraordinarily flexible phenotype.
    Date
    2010
    Author
    Gallie, Jenna
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1215
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1