• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unlocking the M13 (f1 and fd) virion : investigation into the role of the pIII C-domain of F specific filamentous bacteriophage in infection : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand.

    Icon
    View/Open Full Text
    01front.pdf (36.22Kb)
    02_whole.pdf (3.867Mb)
    03_supplements.zip (272.7Mb)
    Export to EndNote
    Abstract
    Ff filamentous bacteriophage infect male (F+) strains of Escherichia coli and are assembled at the cell membranes, by a secretion-like, non-lethal process. The pIII protein, located at one end of the virion-filament, is required at both the beginning and the end of the phage life cycle. During infection, the N-terminal domains of pIII, N2 and N1, bind to the primary and secondary host receptors, F pilus and TolA protein, respectively. At the end of the life cycle, the pIII C-domain mediates the termination and release of virions. Thus, both entry and release involve structural transitions of the virus coupled to membrane transactions of the virion proteins. "Unlocking” of the highly stable virion presumably results in membrane integration during entry, whereas a reverse event, “locking” of the virion, occurs upon detachment from the membrane at termination step of assembly/secretion. Recently, it was shown that the pIII C-domain plays an active role at the step of entry. This finding implicates the C-domain of pIII in “unlocking” of the virion, presumably resulting in the exposure of the membrane anchor at the very C-terminus of pIII (Bennett & Rakonjac, 2006). To further this work, this thesis has mapped the portion of the pIII C-domain required for infection, by constructing a set of nested deletions of the C-domain fused to the receptor binding domains N1 and N2, and then determined the infectivity of phage carrying the mutant proteins. This mapped the portion of the C-domain required for phage infection is different to that required for termination of assembly. The different requirement for entry and release suggests that the two processes are carried out by distinct mechanisms and/or depend on different sets of accessory proteins. In addition, a system was designed for the efficient production and purification of very short virions, the length of which is 1/20 that of the wild-type f1. These short virions, called microphage, are the first step towards the structural analyses of the phage termini cap structures, of which one contains pIII in the “locked” conformation.
    Date
    2009
    Author
    Bennett, Nicholas James
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1221
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1