• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Significant factors affecting horticultural corrugated fibreboard strength : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    02_whole.pdf (12.80Mb)
    01_front.pdf (341.3Kb)
    Export to EndNote
    Abstract
    The New Zealand kiwifruit and apple industries export the two largest horticultural crops by value and tonnage on long sea routes to distant markets. The long storage and shipping times, low temperature (~0°C) and high humidity (>70 %RH) conditions require boxes manufactured from high performance corrugated fibreboard. As the corrugated fibreboard boxes are a significant expense, improvements to reduce the weight and therefore the cost of the corrugated fibreboard, while maintaining their vertical compression strength, would increase the apple and kiwifruit industries profitability Through analysis of the literature it was established that the greatest contributor to box compression strength was the corrugated fibreboard edgewise compression strength, which is significantly affected by moisture. The strength of corrugated fibreboard decreases with increasing moisture content, which tends to be high in low-temperature high-humidity cool-stores. The literature also indicated that temperature and moisture content of the fluting medium could be optimised to reduce the damage caused during the fluting process. The objectives of this study included improving box compression strength predictions by measuring the effect of moisture and temperature on the strength of the corrugated fibreboard and measuring the relationship between temperature, humidity and corrugated fibreboard moisture content. The objectives also included developing a mathematical model to optimise the operations preceding the fluting process by predicting the fluting medium moisture content and temperature just prior to the fluting process. The measurements of corrugated fibreboard properties enabled the widely known McKee’s equation to be modified to enable the prediction of box compression strength over a range of moisture contents (7 to 30 %db), the valves of which could be estimated using the moisture sorption isotherms developed in this study over the temperature and relative humidity range of 0 to 20°C and 40 to 90 %RH. A mathematical model was developed to predict how the operation of the corrugator would affect the temperature and moisture content of the fluting medium just prior to the fluting process. The model was tested by running the corrugator at normal and extreme settings based on the model’s predictions, and measuring the strength properties of the corrugated fibreboard produced. The measured strength properties indicated that the machine speed and steam shower could have an effect but the too were inconsistent to established firm conclusions.
    Date
    2008
    Author
    Nevins, Andrew Logie
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/1248
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1