• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interactions of AtRGL1, a negative regulator of gibberellic acid signalling : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry, Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (1.395Mb)
    02_whole.pdf (25.28Mb)
    Export to EndNote
    Abstract
    Arabidopsis thaliana AtRGL1 (repressor of ga1-3 like-1) is a negative regulator of the signal transduction pathway of the plant hormone gibberellin. AtRGL1 belongs to the DELLA subfamily within the GRAS family of plant regulatory proteins. There are four other DELLA proteins, including AtRGA (repressor of ga1-3) and AtRGL2, encoded by the A. thaliana genome. Previous studies provided evidence that the DELLA proteins are nuclear localised and are functionally divided into N- and C- terminal domains. The N-terminal domain perceives the gibberellin signal, while the C-terminal domain functions as a negative regulator of transcription and also as a possible dimerisation domain. Previous studies have also shown that AtRGA, AtRGL1, and AtRGL2 function together in the regulation of the development of the inflorescence and that AtRGL1 is primarily expressed in this tissue. To investigate how DELLA proteins function in gibberellin signalling. I sought plant proteins that interact with AtRGL1. Two proteins. p24 (24 kDa) and p64 (64 kDa), were isolated from wild-type plant nuclear extracts by affinity to the N-tenninal 121 amino acid residues of AtRGL1. The identity of these two proteins remains to be established. To investigate the interactions of the C-terminal domain of AtRGL1 an anti-AtRGL1 polyclonal antiserum was developed for co-immunoprecipitation experiments. However, AtRGL1 was not detectable in plant nuclear extracts from the inflorescence of wild-type plants, precluding this approach. The possibility of DELLA protein dimerisation was also investigated using AtRGA, AtRGL1, and AtRGL2 in yeast 2-hybrid experiments. Yeast 2-hybrid protein interaction results suggest that AtRGA, AtRGL1, and AtRGL2 do not form homo- or hetero-dimers. Complexities encountered with this approach could make these results invalid, so these interactions require further investigation.
    Date
    2005
    Author
    Sheerin, David John
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/12569
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1