• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In situ recovery of secondary metabolites using adsorption resins : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (1.703Mb)
    02_whole.pdf (17.84Mb)
    Export to EndNote
    Abstract
    Almost without exception a two to three fold increase in microbial secondary metabolite concentration was measured when adsorption resins were added in-situ during a submerged liquid fermentation. Anguidine was produced at a final concentration of 440 mg/L after five days in a shake flask that contained adsorption resin, compared to 300 mg/L without resin. Rapamcyin was produced at a final concentration of 87 mg/L after six days in a shake flask that had resin present, compared to 28 mg/L without resin. Ansamitocin P3 was produced at a final concentration of 24 mg/L after six days in a shake flask with resin, compared to 9.75 mg/L without resin. The increase in secondary metabolite concentration confirmed that the resins used provided a positive influence on secondary metabolite production. Adsorption resins for shake flask studies were selected based on their ability to achieve maximum adsorption of specific secondary metabolites in various fermentation systems. A library of adsorbed concentrations was collected for the three secondary metabolites studied. The lipophilicty of the metabolite, calculated by several software packages, was compared to the polarity of the adsorption resin to generate a relationship. By using the preceding set of data it is possible to select adsorption resins that improved the produced concentrations of the target organic secondary metabolites. The fermentation media compositions tested appeared to have no effect on the final product concentration when adsorption resins were added in situ during the fermentations. Based on the lipohilictiy of the secondary metabolite and the polarity of the resins, it is possible to select a resin that achieves a high adsorption concentration of the target organic secondary metabolite.
    Date
    2006
    Author
    Ryan, Jason L. J
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/12625
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1