• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of an in vitro assay to screen Agathis australis (kauri) for resistance to Phytophthora agathidicida : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science at Massey University, Manawatū, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (281.9Kb)
    02_whole.pdf (1.867Mb)
    Export to EndNote
    Abstract
    The iconic Agathis australis (kauri) of New Zealand, is under serious threat from kauri dieback disease caused by the soil-borne pathogen Phytophthora agathidicida. Infected kauri express symptoms of root and collar rot, bleeding resins at the base of the trunk, yellowing of foliage, canopy thinning, and tree mortality. Phytophthora agathidicida was first associated with kauri decline in 1972, where it was initially identified as P. heveae however, there was some uncertainty about its significance and taxonomy. The pathogen was officially identified as a new organism in 2008 and was called Phytophthora taxon Agathis until its formal description as Phytophthora agathidicida in 2015. This pathogen is easily vectored through root to root contact and mobile zoospores. Management and research has focused on mapping pathogen distribution, reducing spread, improving detection, ex situ conservation and clonal production using tissue culture techniques. In order to gain better understanding of the disease epidemiology and to develop better breeding programmes, a reliable in vitro resistance screening assay is required. This research focused on the development of a screening assay using detached leaves from tissue culture material as a means of accelerating screening assays compared to the more labour-intensive root inoculation assays. Foliar inoculations and assessment techniques were initially optimised on kauri leaves from tissue culture lines. The most successful inoculation method involved placing P. agathidicida-colonised agar plugs on wounded detached leaves. The assay was further tested on 2 year old kauri seedlings. Variation in susceptibility across kauri genotypes and leaf age, and variation in virulence among P. agathidicida isolates was observed. To further investigate the impact of leaf age on lesion extension, an assay was conducted on detached leaves from six rooted kauri saplings over 5 years of age, across three leaf age groups with P. agathidicida, P. multivora, and P. cinnamomi. Variation in virulence among these Phytophthora species was observed. Leaf necrosis was most severe with young tissue and susceptibility tended to decrease with increasing leaf age. Preliminary studies with 50 kauri clones identified different levels of susceptibility and tolerance across the different genotypes to P. agathidicida. The methods developed within this study have increased our understanding of the overall response of kauri to P. agathidicida foliar inoculations. This study demonstrated variation in the susceptability of kauri foliage to Phytophthora inoculation, although no complete resistance was observed. Further work is required to determine if there is a relationship between root and leaf responses which will help establish if in vitro genotypic variation can accurately predict natural genotypic variation seen within kauri forests.
    Date
    2017
    Author
    Herewini, Echo
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/12738
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1