• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechatronic simulation & exploration of a mechanical context relevant to quadrupedal neuromorphic walking employing Nervous networks for control : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering, Mechatronics at Massey University, Albany, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (8.602Mb)
    02_whole.pdf (33.51Mb)
    Export to EndNote
    Abstract
    Neuromorphic engineering is the studv and emulation of neural sensory and control structures found in the natural world. Currently a significant research focus in this field, and indeed, in engineering at large, is the research of robotic walking platforms - an ideal application for artificial neural controllers. To design such neuromorphic controllers, significant knowledge is needed of the robotic context to which they will he applied. The focus of this research is to explore the relationship between the mechanical design of a robot, and its resultant walking proficiency. A neuromorphic controller utilizing Nervous networks was constructed, and embedded into a typical & useful mechatronic context. This consists of a simple walking platform, of a type commonly used in Nervous network research. This robot was used to provide intuition and a reference point for development of a simulation for empirical testing. A physical simulation of the mechanical context was developed, allowing for the exploration of its behaviour, particularly with regard to the type of walking "caused" by the integration of an appropriate Nervous network controller. To evaluate the behavioural fitness of this context in various configurations, empirical simulations were run using the developed simulation, and heuristic results derived to develop optimized parameters for causing walking behaviours in the studied context. Further simulations were then run to evaluation the efficacy of these developed heuristics. From these simulations & explorations, the presence of an identifiable "critical point phenomenon" in the interaction between the robot's legs was demonstrated. This critical point was then used for parameter extraction; further simulation demonstrated that parameters extracted from this critical point provided near-optimal walking behaviour from the robot in a variety of leg topologies. These results provide significant knowledge and intuition for designers of quadrupedal walking platforms, particularly those driven from Nervous network derived neuromorphic controllers. Implementation of these results in such a robotic platform will provide useful new "real world" data, allowing the developed models & heuristics to be further refined.
    Date
    2008
    Author
    Read, Matthew
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/12795
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1