• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding aspects of alginate biosynthesis and regulation by Pseudomonas aeruginosa : a thesis presented in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Microbiology at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (245.5Kb)
    02_whole.pdf (3.885Mb)
    Export to EndNote
    Abstract
    Alginate is a medically and industrially important polymer produced by seaweeds and certain bacteria. The bacterium Pseudomonas aeruginosa over-produces alginate during cystic fibrosis lung infections, forming biofilms, making the infection difficult to treat. Bacteria make alginate using membrane spanning multi-protein complexes. Although alginate biosynthesis and regulation have been studied in detail, there are still major gaps in knowledge. In particular, the requirement of AlgL (a periplasmic alginate degrading enzyme) and role played by MucR (an inner membrane c-di-GMP modulator) are not well understood. Here I show that AlgL and MucR are not essential for alginate production during biofilm growth. My findings suggest that while catalytically active AlgL negatively affects alginate production, expressing catalytically inactive AlgL enhances alginate yields. Furthermore, preliminary data show AlgL is not required for the stability or functionality of the alginate biosynthesis complex, suggesting that it is a free periplasmic protein dispensable for alginate production. These findings support the prediction that the primary function of AlgL is to degrade misguided alginate from the periplasm. For MucR, I show for the first time that its sensor domain mediates nitrate-induced suppression of alginate biosynthesis. This appears to occur at multiple levels in a manner only partially dependent on c-di-GMP signaling. These results indicate that MucR is associated with the negative effect of nitrate (and possibly denitrification) on alginate production. On the basis of these results, I propose a combination of nitrate (or denitrification intermediates), exogenous lyases and antimicrobial agents could be used to eliminate established chronic biofilm infections. Furthermore, catalytically inactive AlgL and/or homologs of MucR with disabled sensor motifs could be harnessed in non-pathogenic bacteria for producing tailor-made alginates.
    Date
    2017
    Author
    Wang, Yajie
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/12986
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    | Contact Us | Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1-beta1