• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The recovery of nickel from hyperaccumulator plant ash : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University, Palmerston North, New Zealand

    Icon
    View/Open Full Text
    01_front.pdf (1.419Mb)
    02_whole.pdf (21.78Mb)
    Export to EndNote
    Abstract
    Nickel hyperaccumulator plants have the unusual ability to absorb nickel from the soil they grow in and incorporate it into their structure, to concentrations greater than 1% dry weight. This selective accumulation process occurs with the relevant exclusion of most other metals from the plant material. Combustion of this material then results in a nickel-rich ash (10-15%) of relatively high purity when compared to commercially mined ore (1-4% Ni). Much work has focused on the plants themselves, with suggestions of them being applied to the commercial extraction of nickel from soil, with yields up to 200 kg per hectare. However, little work has been undertaken on the recovery of nickel from the plant material. Given the refined nature of nickel hyperaccumulator ash and that any commercial enterprise is governed by economics, it was thought that a more specific nickel recovery process could be determined for the ash than simply smelting with nickel ore. Such a process should produce an end product of greater worth than smelted nickel. To this end nickel electrowinning and nickel salt crystallisation were investigated. Ashing of the plant material by open flame combustion was found to produce a bio- ore suitable for nickel solubilisation, with the energy produced by the process possibly being of economic benefit if applied to the generation of electricity. Leaching of the nickel from the ash was investigated using a variety of acids with sulfuric acid primarily used, owing to the common usage of a sulfate medium in both nickel electrowinning and crystallisation. A 96% solubilisation of the nickel from the ash was achieved using 4M H₂SO₄, with resulting extracts containing nickel at approximately 0.35 mol/l concentrations. The addition of nitric acid to aid in nickel leaching while successful, also solubilised greater quantities of impurities and caused complications in later processing. Electrowinning of nickel from an ash extract solution, once neutralised to pH values of 4-6, required the balancing of sulfate and nitrate concentrations. Excesses or indeed the absence of either, proved to inhibit metallic nickel electrodeposition, instead two different hydroxide products were observed. However, once balanced a metallic nickel deposit was produced with a current efficiency for the electrowinning period of 94%. From solutions containing a range of potassium and nickel sulfate concentrations it is found that the double salt K₂Ni(S0₄)₂.6H₂O will crystallise. The ash extract, being of hyperaccumulator origin, contains both Ni and K in high concentrations, with SO₄²- being added during the leaching process. It was found that double salt crystals formed without chemical aid even in a highly acidic solution, but with the addition of KOH and/or K₂SO₄ could be crystallised to the extent where as little as 1.5 g/l Ni remained in solution. The blue/green cubic crystals are easily recovered in good yield, corresponding to a 98% recovery of nickel from the ash extract. While no large market exists for the material at present, there are possibilities for its use and given a theoretical yield of 690 kg K₂Ni(SO₄)₂.6H₂O per hectare, there is potential for substantial monetary return.
    Date
    2000
    Author
    Kirk, Anthony Hans Peter
    Rights
    The Author
    Publisher
    Massey University
    URI
    http://hdl.handle.net/10179/13446
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1