Phenotypic assessment and quantitative trait locus (QTL) analysis of herbage and seed production traits in perennial ryegrass (Lolium perenne L.) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Ph. D.) in Plant Science, Institute of Natural Resources, College of Sciences, Massey University, Palmerston North, New Zealand

Thumbnail Image
Open Access Location
Journal Title
Journal ISSN
Volume Title
Massey University
The aims of this study were to develop a genetic linkage map of perennial ryegrass, identify quantitative trait loci (QTL) for herbage and seed production traits, and to identify DNA markers associated with QTL for use in marker-assisted selection (MAS). Major traits identified for herbage production were leaf elongation rate (LER), leaf lamina length (LL), tiller number (TN) and tiller weight (TW), and for increased seed production were seed yield per head (SdYH), reproductive tiller number (RT), reproductive tillers with matured heads (TMH), florets per head (FH), spikelets per head (SH), florets per spikelet (FS), floret site utilization (FSU) and seed weight (TSW). A genetic linkage map spanning 582 centimorgans (cM) was constructed with EST-SSR (simple sequence repeat markers derived from expressed sequence tags) and used to identify QTL for herbage dry weight (DW) and seed yield per plant (SdYP), and their key component traits. Significant genotype by environment effects were encountered for herbage yield, with fewer QTL identified in spring than in autumn. For some traits, ranking of genotypes differed greatly between seasons and different QTL were identified. QTL for DW were identified on linkage groups (Lg) 1 and 6. The QTL on Lg 6 co-located with QTL for TN, while that on Lg 1 co-located with LER and LL. Markers at Lg 1 QTL (qDW-03-1.1) may be more useful for increasing herbage production by MAS because selection for high LER and long LL has been suggested to increase herbage production in perennial ryegrass. QTL for SdYP were identified on Lg 2 and Lg 6. The QTL on Lg 6 co-located with QTL for SdYH, FSU and TSW, while that on Lg 2 co-located with FH, SH and FS. For seed production, markers at Lg 6 QTL (qSdYP-03-6) may be very useful because this QTL co-located with QTL for SdYH, FSU and TSW, and SdYH has been identified previously as a key selection criterion for increasing seed yield. Marker-trait validation confirmed markers pps0495 and pps0698 identified by QTL analysis to be potentially useful for selecting for fast leaf appearance and long LL, respectively, in perennial ryegrass.
Perennial ryegrass analysis