• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface-enhanced Raman spectroscopy for environmental and biological analysis : a dissertation presented for the Doctor of Philosophy in Nanoscience, Massey University, Manawatu, New Zealand. EMBARGOED until 1 October 2021.

    Icon
    Export to EndNote
    Abstract
    In recent years, extended efforts have been made to protect the environment, public and animal health from toxic chemicals that create a threat to the society. Either it is rodenticides affecting the entire forest food chain or toxicity of certain drugs on animals and humans. All such outbreaks require a faster and readily available detection method as a solution. There are numerous techniques for such toxic contaminant detection, but all require specific instrumentation and tedious sample preparation procedures. Due to the growing popularity of Surfaceenhanced Raman spectroscopy (SERS), detection becomes a simpler, easier, faster and inexpensive for multiplex detection of environmental, chemical or biological contaminants. Here, we explored a variety of SERS substrates (e.g., etched silicon, silver dendrites, and silver colloidal nanoparticles) for such detection. Our results demonstrate that colloidal nanoparticles combined with an omniphobic substrate, known as slippery infused porous substrate (SLIPSERS) has the potential for detection of rodenticides and anesthetic drugs in simple and complex biological matrices. This research explores the diversity of this method as well as how it behaves differently in different environments responsible for surface enhancement by substrate characterisation. An initial experiment was performed on Rhodamine 6G as a test analyte using SLIPSERS which give an excellent limit of detection down to picomolar level concentration. Therefore, the method was further applied for the detection of rodenticides – brodifacoum and sodium monofluoroacetate in aqueous solution and milk and lidocaine hydrochloride in aqueous and deer antler velvet. The results indicate that SLIPSERS and SERS are capable of highly sensitive detection, characterisation, and quantification of toxic analytes in the environment that pose a threat to society. Moreover, for the first time, the SLIPSERS method has been used for detection and quantification of such analytes quickly and accurately.
    Date
    2019
    Author
    Mehta, Megha
    Rights
    The Author
    Publisher
    Massey University
    Description
    Embargoed until 1 October 2021
    URI
    http://hdl.handle.net/10179/15502
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1