• Login
    View Item 
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    •   Home
    • Massey Documents by Type
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Alignment of big data perceptions in New Zealand healthcare : a thesis presented in partial fulfilment of the requirement for the degree of Doctor of Philosophy in Management at Massey University, Albany, New Zealand. EMBARGOED until 1 May 2021.

    Icon
    Export to EndNote
    Abstract
    The growing use of information systems (IS) in the healthcare sector, on top of increasing patient populations, diseases and complicated medication regimens, is generating enormous amounts of unstructured and complex data that have the characteristics of ‘big data’. Until recent times data driven approaches in healthcare to make use of large volumes of complex healthcare data were considered difficult, if not impossible, because available technology was not mature enough to handle such data. However, recent technological developments around big data have opened promising avenues for healthcare to make use of its big-healthcare-data for more effective healthcare delivery, in areas such as measuring outcomes, population health analysis, precision medicine, clinical care and research and development. Being a recent IT phenomenon, big data research has leaned towards technical dynamics such as analytics, data security and infrastructure. However, to date, the social dynamics of big data (such as peoples’ understanding and their perceptions of its value, application, challenges and the like) have not been adequately researched. This thesis addresses the research gap through exploring the social dynamics around the concept of big data at the level of policy-makers (identified as the macro level), funders and planners (identified as the meso level), and clinicians (identified as the micro level) in the New Zealand (NZ) healthcare sector. Investigating and comparing social dynamics of big data across these levels is important, as big data research has highlighted the importance of business-IT alignment to the successful implementation of big data technologies. Business-IT alignment is important and can be investigated through many different dimensions. This thesis adopts a social dimension lens to alignment, which promotes investigating alignment through people’s understanding of big data and its role in their work. Taking a social dimension lens to alignment fits well with the aim of this thesis, which is to understand perceptions around the notion of big data technologies that could influence the alignment of big data in healthcare policy and practice. With this understanding, the research question addressed is: how do perceptions of big data influence alignment across macro, meso, and micro levels in the NZ healthcare sector? This thesis is by publication with four research articles that answer these questions as a body of knowledge. A qualitative exploratory approach was taken to conduct an empirical study. Thirty-two in-depth interviews with policy makers, senior managers and physicians were conducted across the NZ healthcare sector. Purposive and snowball sampling techniques were used. The interviews were transcribed verbatim and analysed using general inductive thematic analysis. Data were first analysed within each group (macro, meso, and micro) to understand perceptions of big data, then across groups to understand alignment. In order to investigate perceptions, Social Representations Theory (SRT), a theory from social psychology, was used as the basis for data collection. However, data analysis led to the decision to integrate SRT with Sociotechnical Systems Theory (SST), a well-known IS theory. This integration of SRT with SST developed the Theory of Sociotechnical Representations (TSR), which is a key theoretical contribution of this research. The thesis presents the concept and application of TSR, by using it to frame the study’s findings around perceptions of big data across macro, meso and micro levels of the NZ healthcare sector. The practical contribution of this thesis is the demonstration of areas of alignment and misalignment of big data perceptions across the healthcare sector.--Shortened abstract
    Date
    2019
    Author
    Wannitilake Mudiyanselage, Kasuni Gayara Weerasinghe
    Rights
    The Author
    Publisher
    Massey University
    Description
    Embargoed until 1 May 2021
    URI
    http://hdl.handle.net/10179/15534
    Collections
    • Theses and Dissertations
    Metadata
    Show full item record

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1
     

     

    Tweets by @Massey_Research
    Information PagesContent PolicyDepositing content to MROCopyright and Access InformationDeposit LicenseDeposit License SummaryTheses FAQFile FormatsDoctoral Thesis Deposit

    Browse

    All of MROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Copyright © Massey University
    Contact Us | Send Feedback | Copyright Take Down Request | Massey University Privacy Statement
    DSpace software copyright © Duraspace
    v5.7-2020.1